Florian Weber

23. 7. 2016

 ${\sf coalescent} = {\tt ,,zusammenwachsend} ``$

Outline

- ▶ Population Genetics and the Wright-Fisher-model
- ► The Coalescent
- Non-constant population-sizes
- Further extensions
- Summary

Population Genetics

(Shamelessly stealing Alexis' slides)

- Study of polymorphisms in a population
 - ▶ What are the processes that introduce polymorphisms in the population?
 - If a polymorphism exists in a population, will it be there for ever?
 - Is there some process that removes polymorphisms from the population?
 - Do the polymorphisms exhibit patterns?

► The coalescent is basically the Wright-Fisher-model with a lot of analysis.

- ► The coalescent is basically the Wright-Fisher-model with a lot of analysis.
- ▶ It can easily do calculations about the past

- ► The coalescent is basically the Wright-Fisher-model with a lot of analysis.
- It can easily do calculations about the past
- ▶ It is very fast to compute

- ► The coalescent is basically the Wright-Fisher-model with a lot of analysis.
- It can easily do calculations about the past
- ▶ It is very fast to compute
- Is can easily be extended to represent a more complex reality

Hardy-Weinberg

Assuming an infinite population size, random mating, diploid population, no selection... the allele-frequencies are constant

Hardy-Weinberg

- Assuming an infinite population size, random mating, diploid population, no selection... the allele-frequencies are constant
- ▶ Infinity is weird... $0.3 \times \infty = \infty$
- ...and unrealistic

Wright-Fisher

Assuming a finite but constant population size, random mating, non-overlapping generations, no selection... all alleles except for one will disappear over time.

Wright-Fisher

- Assuming a finite but constant population size, random mating, non-overlapping generations, no selection... all alleles except for one will disappear over time.
- ► The likelihood for an allele to prevail is equal to it's initial frequency

Wright-Fisher

Figure 1: A simulation of three alleles under the model

Wright-Fisher (Individuals)

Figure 2: An evolutionary history in the model

Wright-Fisher (Individuals)

Figure 3: Extinct alleles removed

Wright-Fisher (Individuals)

Figure 4: Surviving Tree

Wright-Fisher (MRCA)

Figure 5: Most Recent Common Ancestor marked

Wright-Fisher (Coalescence-Events)

Figure 6: Coalescence-Events of the green individuals

Figure 7: Two individuals and their parents

Likelihood for two nodes to coalesce in the previous generation: $p(P(A) = P(B)) = \frac{1}{N}$

- Likelihood for two nodes to coalesce in the previous generation: $p(P(A) = P(B)) = \frac{1}{N}$
- In the previous two generations: $(N-1, N-1) = (N-1)^{2}$

$$1 - \left(\frac{N-1}{N} \cdot \frac{N-1}{N}\right) = 1 - \left(\frac{N-1}{N}\right)^2$$

- Likelihood for two nodes to coalesce in the previous generation: $p(P(A) = P(B)) = \frac{1}{N}$
- In the previous two generations:

$$1 - \left(\frac{N-1}{N} \cdot \frac{N-1}{N}\right) = 1 - \left(\frac{N-1}{N}\right)^2$$

▶ In the previous three generations:

$$1 - \left(\left(\frac{N-1}{N} \right)^2 \cdot \frac{N-1}{N} \right) = 1 - \left(\frac{N-1}{N} \right)^3$$

- Likelihood for two nodes to coalesce in the previous generation: $p(P(A) = P(B)) = \frac{1}{N}$
- In the previous two generations: $1 \left(\frac{N-1}{N} \cdot \frac{N-1}{N}\right) = 1 \left(\frac{N-1}{N}\right)^2$
- ► In the previous three generations:

$$1 - \left(\left(\frac{N-1}{N} \right)^2 \cdot \frac{N-1}{N} \right) = 1 - \left(\frac{N-1}{N} \right)^3$$

► In the previous t generations $1 - \left(\frac{N-1}{N}\right)^t$

* without loss of generality

Figure 8: Likelihood of coalescence

▶ Likelihood of coalescence in the previous *t* generations:

$$1-\left(\frac{N-1}{N}\right)^t$$

▶ Likelihood of coalescence in the previous *t* generations:

$$1-\left(\frac{N-1}{N}\right)^t$$

▶ Likelihood for lineages to remain distinct for *t* generations:

$$\left(\frac{N-1}{N}\right)^t$$

▶ Likelihood of coalescence in the previous *t* generations:

$$1-\left(\frac{N-1}{N}\right)^t$$

▶ Likelihood for lineages to remain distinct for *t* generations:

$$\left(\frac{N-1}{N}\right)^t$$

Expected time for coalescence: E(t) = N

▶ Likelihood of coalescence in the previous *t* generations:

$$1-\left(\frac{N-1}{N}\right)^t$$

Likelihood for lineages to remain distinct for t generations:

$$\left(\frac{N-1}{N}\right)^t$$

- **Expected time for coalescence:** E(t) = N
- ▶ Rescale: $\tau = \frac{t}{N}$:

$$\left(\frac{N-1}{N}\right)^{\lceil N\tau\rceil} \xrightarrow[N\to\infty]{} e^{-\tau}$$

 \Rightarrow The likelihood for two lineages to stay distinct over time is exponentially small!

Moar Lineages!!

Figure 9: http://what-if.xkcd.com/13/

► Likelihood of no coalescence in one generation and three lineages:

$$\frac{N-1}{N} \times \frac{N-2}{N}$$

► Likelihood of no coalescence in one generation and three lineages:

$$\frac{N-1}{N} \times \frac{N-2}{N}$$

One generation, k lineages:

$$\frac{N-1}{N} \times \frac{N-2}{N} \times \cdots \times \frac{N-k+1}{N} = \prod_{i=1}^{k-1} \frac{N-i}{N}$$

▶ For some reason this is equal to:

$$\prod_{i=1}^{k-1} \frac{N-i}{N} = 1 - \frac{\binom{k}{2}}{N} + O\left(\frac{1}{N^2}\right) \approx 1 - \frac{\binom{k}{2}}{N}$$

• $\binom{k}{2}$ is the binomial coefficient and equates to $\frac{k \cdot (k-1)}{2}$

For some reason this is equal to:

$$\prod_{i=1}^{k-1} \frac{N-i}{N} = 1 - \frac{\binom{k}{2}}{N} + O\left(\frac{1}{N^2}\right) \approx 1 - \frac{\binom{k}{2}}{N}$$

- $\binom{k}{2}$ is the binomial coefficient and equates to $\frac{k \cdot (k-1)}{2}$
- ▶ There are $\binom{k}{2}$ ways to pick two lineages from a set of k lineages.

For some reason this is equal to:

$$\prod_{i=1}^{k-1} \frac{N-i}{N} = 1 - \frac{\binom{k}{2}}{N} + O\left(\frac{1}{N^2}\right) \approx 1 - \frac{\binom{k}{2}}{N}$$

- $\binom{k}{2}$ is the binomial coefficient and equates to $\frac{k \cdot (k-1)}{2}$
- ▶ There are $\binom{k}{2}$ ways to pick two lineages from a set of k lineages.
- ► Therefore a coalescence-event is $\binom{k}{2}$ -times as likely with k lineages than with 2

For some reason this is equal to:

$$\prod_{i=1}^{k-1} \frac{N-i}{N} = 1 - \frac{\binom{k}{2}}{N} + O\left(\frac{1}{N^2}\right) \approx 1 - \frac{\binom{k}{2}}{N}$$

- $\binom{k}{2}$ is the binomial coefficient and equates to $\frac{k \cdot (k-1)}{2}$
- ▶ There are $\binom{k}{2}$ ways to pick two lineages from a set of k lineages.
- ► Therefore a coalescence-event is $\binom{k}{2}$ -times as likely with k lineages than with 2
- The number of coalescence-events grows quadratically with the number of lineages!

More Lineages

 $\label{eq:Figure 10:More lineages} \textit{Figure 10: More lineages} = \textit{faster coalscence}$

► Few deep furcations

- Few deep furcations
- ▶ Likelihood: Everything is possible but maybe unlikely

- Few deep furcations
- ▶ Likelihood: Everything is possible but maybe unlikely
- Calculation is backward in times (Wright-Fisher: forward)

- Few deep furcations
- Likelihood: Everything is possible but maybe unlikely
- Calculation is backward in times (Wright-Fisher: forward)
- ▶ Efficient: no calculation per individual or for extinct lineages

Non-constant population-sizes

Figure 11: Wordpopulation - not very constant [Wikimedia]

Non-constant population-sizes

- Non-constant, but known population-size
- ► Coalescence is more likely in small populations
- ightharpoonup \Rightarrow Coalescence-rate changes over time

Non-constant population-sizes

- Non-constant, but known population-size
- Coalescence is more likely in small populations
- ightharpoonup \Rightarrow Coalescence-rate changes over time
- Simply rescale time.

Rescaling Time

- Before: t Generations corresponded to t/N units of coalescence-time
- ▶ Now: *t* Generations correspond to

$$\sum_{i=1}^{t} \frac{1}{N_i}$$

units of coalescence-time

Note: for a constant population both formulas are equal

▶ 5 Generations, with on average 5 individuals:

- ▶ 5 Generations, with on average 5 individuals:
- ▶ For constant 5 individuals: $\tau = \frac{t}{N} = \frac{5}{5} = 1$ unit of coalescence time

- ▶ 5 Generations, with on average 5 individuals:
- ▶ For constant 5 individuals: $\tau = \frac{t}{N} = \frac{5}{5} = 1$ unit of coalescence time
- ► For non-constant {4, 4, 5, 6, 6} individuals:

$$\tau = \sum_{i=1}^{t} \frac{1}{N_i} = \frac{1}{4} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{6} = \frac{31}{30}$$

note the lesser influence of the larger generations

- ▶ 5 Generations, with on average 5 individuals:
- ▶ For constant 5 individuals: $\tau = \frac{t}{N} = \frac{5}{5} = 1$ unit of coalescence time
- ► For non-constant $\{4, 4, 5, 6, 6\}$ individuals:

$$\tau = \sum_{i=1}^{t} \frac{1}{N_i} = \frac{1}{4} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{6} = \frac{31}{30}$$

note the lesser influence of the larger generations

A generation with twice the size, will get halve the coalescence-time

Rescaling Time - Exponential Growth

Figure 12: Exponentially growing population versus coalescence-time

Rescaling Time - Exponential Growth

Figure 13: Exponentially growing and constant opulations. Note the reverse time-scale! [Nordborg]

Rescaling Time - Applicability

- Approximation converges against theory for growing N
- Close enough for most purposes

Further Extensions

- Separated Populations
- Diploid Populations
- Males and Females
- Selection
- Multiple Species
- **.** . . .

Further Extensions

- Separated Populations
- Diploid Populations
- Males and Females
- Selection
- Multiple Species

Wright-Fisher:

Assuming a finite but constant population size, random mating, non-overlapping generations, no selection. . .

Further Extensions

- Separated Populations
- Diploid Populations
- Males and Females
- Selection
- Multiple Species

Wright-Fisher:

Assuming a finite but constant population size, random mating, non-overlapping generations, no selection. . .

Coalescent:

Assuming non-overlapping generations. . .

An actual example

Figure 14: Coalescent vs. Anthropological Estimates [Atkinson et al.]

Software

Software that uses the coalescent model¹: BEAST, COAL, CoaSim, DIYABC, DendroPy, GeneRecon, genetree, GENOME, IBDSim, IMa, Lamarc, Migraine, Migrate, MaCS, ms & msHOT, msms, Recodon and NetRecodon, SARG, simcoal2, Treesim.J

¹Source: https://en.wikipedia.org/wiki/Coalescent_theory

Summary

- ▶ The coalescent is the Wright-Fisher-model plus math
- Coalescent-events are, with exponential likelihood, relatively recent
- ▶ The more lineages there are, the more coalescence-events occur
- ▶ Non-Constant populations can be simulated by rescaling time
- ► The simulated time for a generation is anti-proportional to it's size

References

Content

Magnus Nordborg, "Coalescent Theory", March 2000

Software-list

en.wikipedia.org/wiki/Coalescent_theory

Images

- ▶ Fig. 09: Randal Munroe: what-if.xkcd.com/13/
- ► Fig. 11: EIT: commons.wikimedia.org/wiki/File:Population_curve.svg
- ► Fig. 13: Magnus Nordborg: "Coalescent Theory", 2000
- Fig. 14: Atkinson et al.: "mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory", 2008