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The Coalescent Model

coalescent = „zusammenwachsend“
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Population Genetics

(Shamelessly stealing Alexis’ slides)
I Study of polymorphisms in a population

I What are the processes that introduce polymorphisms in the
population?

I If a polymorphism exists in a population, will it be there for
ever?

I Is there some process that removes polymorphisms from the
population?

I Do the polymorphisms exhibit patterns?
I . . .



Motivation

I The coalescent is basically the Wright-Fisher-model with a lot
of analysis.

I It can easily do calculations about the past

I It is very fast to compute

I Is can easily be extended to represent a more complex reality
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I Assuming an infinite population size, random mating, diploid
population, no selection. . .
the allele-frequencies are constant

I Infinity is weird. . . 0.3×∞ =∞
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Wright-Fisher

Figure 1: A simulation of three alleles under the model
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Figure 2: An evolutionary history in the model
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Figure 3: Extinct alleles removed
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Figure 4: Surviving Tree



Wright-Fisher (MRCA)
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Figure 5: Most Recent Common Ancestor marked
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Figure 6: Coalescence-Events of the green individuals



The Coalescent Model
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Figure 7: Two individuals and their parents
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The Coalescent Model

Gen 0
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Gen 3
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Figure 8: Likelihood of coalescence
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The Coalescent Model

⇒ The likelihood for two lineages to stay distinct over time
is exponentially small!
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Moar Lineages!!

lineages

Figure 9: http://what-if.xkcd.com/13/



More Lineages

I Likelihood of no coalescence in one generation and three
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More Lineages

tim
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coalescence-rateEvents getting
exponentially rare

Figure 10: More lineages = faster coalscence
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I Few deep furcations

I Likelihood: Everything is possible but maybe unlikely

I Calculation is backward in times (Wright-Fisher: forward)

I Efficient: no calculation per individual or for extinct lineages
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Non-constant population-sizes
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Figure 11: Wordpopulation - not very constant [Wikimedia]



Non-constant population-sizes

I Non-constant, but known population-size
I Coalescence is more likely in small populations
I ⇒ Coalescence-rate changes over time
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Rescaling Time

I Before: t Generations corresponded to t/N units of
coalescence-time

I Now: t Generations correspond to

t∑
i=1

1
Ni

units of coalescence-time
I Note: for a constant population both formulas are equal



Rescaling Time - Example

I 5 Generations, with on average 5 individuals:

I For constant 5 individuals: τ = t
N = 5

5 = 1 unit of coalescence
time

I For non-constant {4, 4, 5, 6, 6} individuals:

τ =
t∑

i=1

1
Ni

= 1
4 + 1

4 + 1
5 + 1

6 + 1
6 = 31

30

note the lesser influence of the larger generations

I A generation with twice the size, will get halve the
coalescence-time
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Rescaling Time - Exponential Growth
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Figure 12: Exponentially growing population versus coalescence-time



Rescaling Time - Exponential Growth
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Figure 13: Exponentially growing and constant opulations. Note the
reverse time-scale! [Nordborg]



Rescaling Time - Applicability

I Approximation converges against theory for growing N
I Close enough for most purposes



Further Extensions

I Separated Populations
I Diploid Populations
I Males and Females
I Selection
I Multiple Species
I . . .

Wright-Fisher:
Assuming a finite but constant population size, random
mating, non-overlapping generations, no selection. . .

Coalescent:
Assuming non-overlapping generations. . .
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An actual example

Figure 14: Coalescent vs. Anthropological Estimates [Atkinson et al.]



Software

Software that uses the coalescent model1:
BEAST, COAL, CoaSim, DIYABC, DendroPy, GeneRecon, genetree,
GENOME, IBDSim, IMa, Lamarc, Migraine, Migrate, MaCS, ms &
msHOT, msms, Recodon and NetRecodon, SARG, simcoal2,
TreesimJ

1Source: https://en.wikipedia.org/wiki/Coalescent_theory

http://beast.bio.ed.ac.uk/
http://www.coaltree.net/
http://www.daimi.au.dk/~mailund/CoaSim/index.html
http://www1.montpellier.inra.fr/CBGP/diyabc/
http://www.dendropy.org/
http://www.daimi.au.dk/~mailund/GeneRecon/
http://www.stats.ox.ac.uk/%7Egriff/software.html
http://www.sph.umich.edu/csg/liang/genome/
http://raphael.leblois.free.fr/#softwares
http://genfaculty.rutgers.edu/hey/software#IMa2
http://evolution.gs.washington.edu/lamarc
http://kimura.univ-montp2.fr/~rousset/Migraine.htm
http://popgen.csit.fsu.edu/
https://code.google.com/p/macs/
http://home.uchicago.edu/~rhudson1/source/mksamples.html
http://home.uchicago.edu/~rhudson1/source/mksamples.html
http://www.mabs.at/ewing/msms/
http://darwin.uvigo.es/
http://walnut.usc.edu/~magnus/software/
http://cmpg.unibe.ch/software/simcoal2/
http://staff.washington.edu/brendano/treesimj
https://en.wikipedia.org/wiki/Coalescent_theory


Summary

I The coalescent is the Wright-Fisher-model plus math
I Coalescent-events are, with exponential likelihood, relatively

recent
I The more lineages there are, the more coalescence-events occur
I Non-Constant populations can be simulated by rescaling time
I The simulated time for a generation is anti-proportional to it’s

size
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