Pan-Genomes and de Bruijn Graphs

Seminar Report

Sebastian Giefie

Karlsruhe Institute of Technology

Abstract. This report is based on the paper “Graphical pan-genome
analysis with compressed suffix trees and the Burrows—Wheeler trans-
form” (Baier et al. 2016). The pan-genome of a population is a collection
of genomic sequences of individuals in this population as well as ge-
netic variations. Marcus et al. (2014) proposed the compressed de Bruijn
graph as a suitable datastructure for the pan-genome and introduced
the splitMEM algorithm to construct this graph. Baier et al. (2016)
improved the splitMEM algorithm and developed two algorithms that
outperformed splitMEM significantly. Ilia Minkin et al. (2016) devised a
scalable, low-memory algorithm, called TwoPaCo, that was even more
efficient.

1 Introduction

With the advances made in genome sequencing in the last ten years more and
more genome sequences are available. Not only is the number of sequenced
species growing but also the number of sequenced individuals of the same species.
In October 2015 the 1000 Genomes Project contained a catalog of 2504 human
genomes (Consortium et al. 2015). Finding similarities and variations in indi-
viduals of the same population is of great interest in the field of comparative
genomics. A catalog of sequences and variations of individuals of the same pop-
ulation is called the pan-genome of a population.

Multiple Sequence Alignement (MSA) is a common method of comparing
multiple sequences. A MSA consists of mutiple sequences which are aligned by
insertion of gaps in order to maximize the similarity of the sequences. While
MSAs can be used to identify small-scale mutations (substitution, insertion,
deletion) they fail to recognize larger scale mutations like chromosomal translo-
cations, inversions or gene duplications.

Various approaches based on de Bruijn graphs were proposed to overcome
the shortcomings of MSAs (Raphael et al. 2004; Ilya Minkin et al. 2013) . Mar-
cus et al. (2014) proposed the colored and compressed de Bruijn graph as a
suitable representation for the pan-genome as “the complete pan-genome will be
represented in a compact graphical representation such that the shared/strain-
specific status of any substring is immediately identifiable, along with the con-
text of the flanking sequences. This strategy also enables powerful topological
analysis of the pan-genome not possible from a linear representation”. They

also developed the splitMEM algorithm to construct the compressed de Bruijn
graph. Baier et al. (2016) improved the splitMEM algorithm and developed a
linear time algorithm. They also developed another algorithm (bwt-based) that
uses the Burrows-Wheeler transformation which was even more efficient. Using
bwt-based the compressed de Bruijn graph for seven humans can be calculated
in several hours. Ilia Minkin et al. (2016) introduced TwoPaCo, a scalable, low-
memory algorithm that not only outperforms bwt-based by a considerable factor
but also adapts to the amount of available memory.

2 Preliminaries

2.1 De Bruijn Graphs

Given a string s of length n we denote the substring from positions i to j (in-
clusive) with s[i..j]. A substring of length k is called a k-mer. A substring t of
s with length k and ¢ = s[1..k] is a prefix of s. A substring t of s with length k
and t = s[n — k + 1..n] is a suffix of s.

The de Bruijn graph G(S, k) for a string S and a natural number k is a graph
constructed as follows: For each distinct k-mer of S the de Bruijn graph contains
a node representing this k-mer. If w = Sfi.i+ k] and v = S[i +1..i+ 1+ k| u
and v are connected by an edge u — v. Two nodes u and v can be merged into
a single node if u is the only predecessor of v and v the only successor of u. The
resulting graph is a compressed de Bruijn graph.

GTA CGT

[ACT |——{CTA | { TAC | | ACG | CG$

id len posList adjList

ACTA 1 4 {1} {2} uniqueNode
TACG 2 4 {3,7,11} {3,3,4} repeatNode
CGTA 3 4 {59} {2,2} repeatNode
[ACTA —{ TACC | CG$ CG$ 43 {13} {} uniqueNode

(b) ()

Fig.1: § = ACTACGTACGTACGS and k = 3. (a) The de Bruijn graph. (b)
The compressed de Bruijn graph and (c) its representation as a list of tuples
(id, len, posList, adjList).

In order to compute the de Bruijn graph representation of the pan-genome
for genomic sequences Si, So,...,S, n seperator symbols #i,#a,...,#, are
used to determine the input string S = S1#1S2#32 ... Sp#,3. In practice these
seperator symbols are often the same character to prevent the alphabet size from
growing too big.

The compressed de Bruijn graph will be stored as a list of nodes. Each node
corresponds to a substring w and is represented as a tuple (id, len, posList, adj List).
id is a unique identifier, len is the length of w, posList is a list of positions in S
at which w occurs and adjList is the list of successors of the node.

A node that corresponds to a substring that occurs only once in S is called
a uniqueNode. If it appears multiple times it is called a repeatNode.

Ilia Minkin et al. (2016) introduce resembling definitions. A node in a de
Bruijn graph that either has more than one incoming edge or has more than one
outgoing edge or corresponds to either the first or last k-mer of an input string
is called a junction. A path u ~~ v in a de Bruijn graph is called a non-branching
path if besides u and v there are no junctions on this path. A non-branching
path that cannot be extended is a maximal non-branching path. The graph
obtained after compacting all maximal non-branching path into single edges is
called a compacted de Bruijn graph. As seen in figure 2 the compacted and the
compressed de Bruijn graph are not the same.

TGA

[CcTG] [GAA]

Gl {7 @(

| CTA F——{TAA |
(a)

]GTA}%ACTI:::]EHH

(b) (c)

Fig.2: S = {GTACTGAAT,GTACTAAT?} and k = 3. (a) The de Bruijn graph.
(b) The compacted de Bruijn graph. (¢) The compressed de Bruijn graph.

2.2 Other Data Structures

A suffix tree (ST) for a string S of length n is a rooted directed tree with n
leaves numbered 1 to n (Gusfield 1997). Each edge is labeled with a nonempty
substring of S. Concatenating the edge labels on the path from the root to leaf
i spells out the i-th suffix of S (S[i..n]).

Given string S of length n, a suffix array (SA) for S is an array of integers
that specifies the lexicographic ordering of the n suffixes of S (Gusfield 1997),
i.e. Ssapn) < Ssap < - Ssam-

The Burrows-Wheeler transformation for a string S of length n is a string
BWT of length n. It can be constructed with a n x n matrix of all rotations of S
sorted lexicographically. The last column of that matrix forms the string BWT
(Burrows and Wheeler 1994). The BWT can be constructed from the SA with
BWTI[i] = S[SA[i] — 1] for all i with SA[i] # 1 and BWT[i] = $ otherwise.

In the matrix of lexicographically sorted rotations of a string S we call the first
column F and the last column L. L is equivalent to the BWT, F to the original
string S. The LF-mapping is an array of integers such that F[LF[i]] = L[i]. It
can be used to reconstruct S from the BWT. LF can be computed as LF[i] =
CIL[i]] + 74, where C|c| counts the number of occurences of lexicographically
smaller than ¢ characters in S and r; is the number of occurences of character
L[i] in the prefix L[1..i] (Ferragina and Manzini 2000). The LF-mapping can
also be computed from the SA. With SA[i] = ¢ and SA[j] = ¢ — 1, LF[i] = j
(LF[i] =1if SA[i] =1).

A substring R in a string S is called a repeat if it occurs at least twice in S.
A repeat is called left-maximal if for all pairs [i1,j1] and [ia, ja] of occurences
of R S[iy — 1] # S[iz — 1]. Tt is called right-maximal if for all pairs [iy, j1] and
[i2, jo] of occurences of R S[j1 + 1] # S[j2 + 1]. A repeat that is left-maximal
and right-maximal is called a maximal repeat (Abouelhoda et al. 2002).

A Bloom Filter is a probabilistic data structure (Bloom 1970). It supports
insertion and testing if an element is a member of a set. It needs less memory
than traditional set data structures but can produce false-positives. A Bloom
Filter consists of a bit vector B, initialized to zeros and k independent hash
functions hy, ..., hy. Inserting Element e is achieved by setting B[h;(e)] = 1 for
1 <4 < k. An Element e is member of the set if for all 1 < i < k B[h;(e)] = 1.

The probability that a bit is 0 after n insertions is (1 — %)Im The probability
for a false positive Py, is the probability that all k bits are set to 1 after n

insertions.
1 kn k
Py = (1 — (1 — m)) (1)

3 Methods

The algorithms developed in Baier et al. (2016) are looking for positions at
which nodes have to be split. All other nodes can be merged. Lemma 1 provides
a criterion for splitting nodes.

Lemma 1 (Baier et al. 2016). Let v be a node in the compressed de Bruijn
graph and let w be the string corresponding to v. If v is not the start node, then
it has at least two different predecessors if and only if the length k prefiz of w is
a left-mazimal repeat. It has at least two different successors if and only if the
length k suffix of w is a right-mazimal repeat.

Per definition of the compressed de Bruijn graph u and v can only be merged
if v is the only successor of u and u the only predecessor of v. So with lemma
1 if the string corresponding to v is a left-maximal repeat, v has two different
predecessors and u and v need to be split. Similarly if the string corresponding
to u is a right-maximal repeat, u has two different successors and u and v need
to be split. Figure 3 illustrates this concept.

| w
{caT]

[coc—— cos]|
(a)
>
ATA | TACC —{ CCGTA |

ATA | {TAC]

(b)

Fig.3: (a) Illustration of Lemma 1 for string SSATACCGTACCCS. TAC is a
left-maximal repeat and has two different predecessors. ACC is a right-maximal
repeat and has two different successors. (b) The resulting compressed de Bruijn
graph. Note that since TAC has two different predecessors it is not merged with
any of its predecessors. Similarly ACC is not merged with any successor since it
has two different successors.

3.1 splitMEM and CST based Algorithm

I will briefly outline the splitMEM algorithm and the compressed suffix tree
(CST) based algorithm (cst-based). For details refer to Marcus et al. (2014) and
Baier et al. (2016). Both algorithms consist of the following two phases:

1. Compute set of repeatNodes
2. Compute uniqueNodes and edges

splitMEM computes the repeatNodes using a ST and “suffix skips” in O(n log g)
(n: total sequence length, g: length of longest genome). cst-based also uses a ST
but runs in O(n) time. The second step is achieved by sorting the starting posi-
tions of the repeatNodes, traversing the sorted list and adding uniqueNodes and
edges along gaps between repeatNodes. cst-based uses a non-comparison-based
sorting algorithm to achieve overall linear running time.

3.2 BWT Based Algorithm

Algorithm 1 uses the Burrows Wheeler Transformation and the LF-mapping to
compute the compressed de Bruijn graph in a single backwards pass over S. In
each iteration it either increments the current nodes length or splits the current
node cur if a left-maximal or right-maximal repeat was found. Splitting cur at
index p is done by adding p to G[cur].posList, computing the unique identi-
fier number for the next node, adding cur to G[number].adjList, initializing
G[number].len to k and setting number as the current node. Lemma 1 provides
a criterion for deciding if a split occurs. With iteration index p the currently
processed suffix is w = S),. Let ¢ = S[p — 1]. If (i) the length k prefix of cw is a
right-maximal repeat or (ii) the length k prefix of w is a left-maximal repeat w
must be split.

The naive approach for determining wether or not a substring is a left-
maximal repeat, a right-maximal repeat or none of those would be very inef-
ficient. Preprocessed bit vectors will be used to make these decisions in constant
time. Querying these bit vectors requires the usage of the suffixes index in the
SA. The first processed suffix is S, = $. Its SA index is 1 as $ is lexicograph-
ically smaller than all other characters. So Algorithm 1 initializes j +— 1. The
SA index for the next suffix S,_; can then be obtained from the LF-mapping as
i+ LF(j).

For each right-maximal k-mer o a SA intervall [Ib, rb] can be obtained such
that all suffixes starting with « and no other lie within this intervall in the
SA. Bit vector Bj is then initialized with zeros and for each right-maximal k-
mer’s SA intervall [Ib,rb] Bi[lb] and Bi[rb] are set to 1. Test (i) can than be
performed in constant time by checking if either Bi[i] = 1 or rank,(Bi,1) is
odd. rank;(B,i) return the number ones in B up to and including i and can
be queried in constant time if precomputed. The next nodes unique identifier
can be computed as |(rank;(B1,i) + 1)/2]. Another bit vector By is initialized
to zeros. For each left-maximal k-mer Bs[g] is set to 1 for all ¢ with b < ¢ <
rb. Test (ii) is than equivalent to asking Bs[j] = 1. A third bit vector Bs is
than used to determine a unique identifier for the new node. For each ¢ with
Bs[g] = 1, Bs[LF(q)] is set to 1. Then for those indices i that correspond to
a right-maximal k-mer (i.e. By[i{] = 1 or rank,(B1,4) is odd) Bjs[i] is reset to
zero. The unique identifier is than set to right Max + rank;(Bs,i — 1) + 1 with
right Max = rank,(Bi,n)/2.

Algorithm 1: BWT-BASED
Input: k, BWT, LF
Output: Compressed de Bruijn Graph
(By, Bs, B) + CREATE — BIT — VECTORS(k, BWT)
right Max < rank,(By,n)/2
leftMax < rank;(Bs,n)
create array G of size right Maz + left Max + 1
71
cur < right Mazx + left Max + 1
Gleur].len <1
for p < n downto 2 do
i+ LF(j)
ones « ranki(B1,1)
number L
¢« BWTIi|
if (i): B1[i] = 1 or ones is odd then
L number + |(ones +1)/2]
15 else if (ii): B[j] =1 then
16 | number < rightMax 4+ ranki(Bs,i —1) + 1
17 if ¢ = # then

© 0 N O ok W N

e e
B W N RO

18 add p to front of G[cur].posList

19 add new node to G

20 cur < G.size

21 Gleur].len 1

22 else if number #1 then

23 add p to front of G[cur].posList

24 add cur to front of G[number].adjList
25 G[number].len + k

26 cur < number

27 add 1 to G[cur].posList

The bit vectors can be constructed using the longest common prefix array
(LCP) in O(n log o). The LF-mapping is implemented using a wavelet tree and
thus requires O(log o) time. All other operations take constant time. So the
overall running time is in O(n log o).

3.3 TwoPaCo

Ilia Minkin et al. (2016) present a scalable, low-memory algorithm (TwoPaCo)
that constrcuts the compacted de Bruijn graph. Compaction of the de Bruijn
graph is reduced to the problem of finding junctions. The basic Filter Junction
algorithm (Algorithm 2) called with an ordinary set data structure finds these
junctions but uses large amounts of memory. Instead it is called with a bloom
filter as a set data structure. This drastically reduces memory consumption but

can return false-positives. To eliminate these false-positives a second round is
called with a hash table. As the first round significantly reduced the candidate
set the memory footprint of the hash table is largely reduced. To further reduce
the memory footprint the set of input strings can be partitioned and processed
in seperate rounds.

Lemma 2 states that there is a bijunction between maximal non-branching
paths and junctions of the de Bruijn graph. So in TwoPaCo the set of junctions
is computed, which implies the compacted de Bruijn graph.

Lemma 2 (Ilia Minkin et al. 2016). Let s be an input string and P be the
set of mazimal non-branching paths of the graph G(S,k). Let T be the set of
substrings of s such that each t € T starts and ends with a junction of G(s, k)
and does not contain junctions in between. Then there exists a bijective function
g: T — P.

Algorithm 2 is a naive algorithm for finding junctions. First it calculates the
set of edges E in the de Bruijn graph based on the set of candidate junctions
(lines 1 to 5). E is then used to count the number of incoming and outgoing edges.
If there is only one incoming and one outgoing edge then the corresponding node
is not a junction and is thus unmarked.

Algorithm 2: Filter Junctions

Input: strings S = {s1,...,8,}, integer k, empty set E, candidate set of
marked junction positions C' D J(S, k)
Output: reduced set C

1 for s € S do
2 for 1 <i<|s|—kdo
3 if C[s,i] = marked then
4 insert s[i..i + k] into E
5 L insert s[i — 1..i — 1 + k] into E
6 for s € S do
7 for 1 <i<|s|—kdo
8 v 4 sfii+k—1]
9 if C[s,i] = marked and v is not first or last k-mer of s then
10 mn <0
11 out < 0
12 for ce {A,C,G,T} do
13 if v-c€ E then
14 L out < out +1
15 if ¢c-v € E then
16 L mn < in+1
17 if in =1 and out = 1 then
18 | Cls,i] < unmarked

19 return C

Algorithm 3 calls algorithm 2 twice. In the first pass a Bloom Filter is used
to store E. The Bloom Filter can lead to false-positives. Because of that the edge
counters in and out might be greater than their actual value in the de Bruijn
graph thus leaving positions that should be unmarked in C as marked. In the
second pass E is stored in a hash table. As the candidate set of junction positions
is significantly reduced after the first pass the amount of edges that need to be
stored in E is significantly smaller as well. With E stored in a hash table no
false-positives occur and the returned set C corresponds exactly to the set of
junction positions in the de Bruijn graph.

Algorithm 3: Filter Junctions Two-Pass

Input: strings S = {s1,..., s, }, integer k, candidate set of junction
positions Cj,, integer b

Output: candidate set of junction positions Cl,,;

F + empty Bloom Filter of size b

Ctemp + Filter — Junctions(S, k, F, Ciy,)

H + empty hash table

Cout < Filter — Junctions(S, k, H, Ciemp)

return C\y,;

A W N

For large inputs the hash table in algorithm 3 might still not fit into the main
memory. So in algorithm 4 (TwoPaCo) the input is partitioned into 1 parts and
algorithm 3 is run 1 times with each round processing one part. The partitioning
is achieved by dividing all input k-mers. It is important that for a k-mer that
occurs multiple times at different positions all positions are handled in the same
round. In round i only the positions of the k-mers in partition i are initialized
as marked in the cadidate set of junction positions C;. This leads to a smaller
set of edges E in algorithm 2 and thus decreases memory consumption.

Algorithm 4: TwoPaCo
Input: strings S = {s1,..., s, }, integer k, integer 1, integer b
Output: compacted de Bruijn graph
Cinit < boolean array (initialized as unmarked)
Divide k-mers of S into 1 partitions
for0<i<ldo
C; < mark every position of C;,;; belonging to partion i
L C! + Filter JunctionsTwoPass(S, k,b, C;)
Cfinal — U CZ/
7 return Graph implied by C'inal

U W N

(=)

4 Results

Marcus et al. (2014) implemented splitMEM in C++. Baier et al. (2016) im-
plemented their algorithms cst-based and bwt-based in C++ using sdsl (Gog
et al. 2014). Tlia Minkin et al. (2016) implemented TwoPaCo in C++ using Intel
Thread Building Blocks (TBB).

Baier et al. (2016) performed experiments on 40 E.coli genomes, on 62 E.coli
genomes (list of genomes in Supplementary Material of Marcus et al. (2014))
and on 7 human genomes. “The experiments were conducted on a 64 bit Ubuntu
14.04.1 LTS (Kernel 3.13) system equipped with two ten-core Intel Xeon pro-
cessors E5-2680v2 with 2.8 GHz and 128 GB of RAM (but no parallelism was
used). All programs were compiled with g++ (version 4.8.2) using the provided
makefile.” Table 1 shows running times and peak memory consumption. Clearly
cst-based and bwt-based outperform splitMEM significantly. They are also able
to compute the compressed de Bruijn graph for seven human genomes which
was not possible with splitMEM as the memory requirements were too high. Ta-
ble 2 shows some statistics about the calculated compressed de Bruijn graphs.
The graph size is shown in bytes per base pair. Storing the sequences in an un-
structerd way requires 0.25 byte per base pair (as characters {A4,C, G, T} can
be encoded with 2 bits). As seen in the table the storage size for the compressed
de Bruijn graph can go as high as 1.65 bytes per base pair (6.6 times more than
storing sequences) and as low as 0.06 (4.33 times less). The higher storage needs
come from overlapping characters in nodes. Storage is saved with repeatNodes
as they only need to be saved once. With greater k the graph gets smaller. The
table also shows that there are more repeatNodes than uniqueNodes, especially
for smaller values of k. An interesting difference between E.coli and humans
is that repeatNodes are larger than uniqueNodes in humans (for & = 50 and
k = 100) and smaller in E.coli.

Table 1: Benchmark taken from Baier et al. (2016). Cells show running times in
seconds and in parentheses the maximum main memory usage in bytes per base
pair.

k=50 k=100 k=1000

40 E.coli

split MEM 1985 (572.19) 2098 (572.20) 1653 (572.19)
cst-based 473 (4.91) 448 (4.72) 401 (4.55)
bwt-based 185 (2.22) 184 (1.63) 194 (1.49)
7T HG

splitMEM - - -
cst-based 87605 (4.74) 82812 (4.62) 80116 (4.58)
bwt-based 29014 (2.78) 28129 (2.22) 28588 (2.05)

Ilia Minkin et al. (2016) ran their experiments “on the highest memory Ama-
zon EC2 instance (r3.8xlarge): a server with Intel Xeon E5-2670 processors and
244 GB of RAM”. They used the same set of 62 E.coli genomes and 7 human
genomes to compare splitMEM, bwt-based and TwoPaCo. They ran bwt-based
with a single strand and both strands (added reverse complement of inputs to
sequence). They ran TwoPaCo with a single thread and 15 threads. Table 3
shows that bwt-based outperforms splitMEM (around 8-9 times faster, around
209-356 times less memory). It also shows that TwoPaCo outperforms bwt-based

Table 2: Statistics about the compressed de Bruijn graphs taken from Baier et al.
(2016). Graph size is shown in bytes per base pair.
k=50 k=100 k=1000
62 E.coli (310 million base pairs)

graph size 1.12 0.68 0.06
edges 16304084 9219061 555810
nodes 1007765 738980 117021
uniqueNodes 174717 141167 34463
repeatNodes 833048 597813 82558
avg. out-degree 16.18 12.48 4.75
avg. node length 86.70 170.15 2105.87
avg. uNode length 132.23 257.81 3242.76
avg. rNode length 77.15 149.45 1631.28
7 HG (21201 million base pairs)

graph size 1.65 1.16 1.00
edges 2056675301 1475958859 1319219774
nodes 25367105 12030826 3851688
uniqueNodes 2614834 2316797 1143848
repeatNodes 22752271 9714029 2707840
avg. out-degree 81.08 122.68 342.50
avg. node length 163.48 364.16 2326.95
avg. uNode length 99.44 208.65 2505.46
avg. rNode length 170.84 401.24 2251.54
nodes shared by 1 11.36% 21.23% 30.01%
nodes shared by 2 5.93% 10.74% 12.17%
nodes shared by 3 0.19% 0.31% 0.43%
nodes shared by 4 0.31% 0.47% 0.66%
nodes shared by 5 6.20% 11.60% 16.63%
nodes shared by 6 9.74% 17.46% 20.64%

nodes shared by 7 66.28% 38.19% 19.46%

(around 1.9-45 times faster and 2.6-44 times less memory based on configuration
and parameters).

Table 3: Benchmark taken from Ilia Minkin et al. (2016). Cells show running
time in minutes and memory usage (gigabytes) in parentheses. A dash indicates
that the program ran out of memory. splitMEM and bwt-based were run using
standard paramters. TwoPaCo was run using one round and Bloom filter sizes
b = 0.13GB for E.coli, b = 4.3G B for human with k = 25 and b = 8.6GB for
human with k = 100.

splitMEM bwt-based TwoPaCo
(Marcus et al. 2014) (Baier et al. 2016) (Ilia Minkin et al. 2016)
single strand|single strand both strands| 1 thread 15 threads
E.coli (k=25) 70 (178.0) 8 (O 85) 2 (1.7)| 4 (0.16) 2 (0.39)
E.coli (k=100) 67 (178.0) 8 (0.5) 2 (1.0)| 4 (0.19) 2 (0.39
7 humans (k=25) -| 867 (100.3) 1605 (209 88)| 436 (4.4) 6 (4.84
7 humans (k=100) -| 807 (46.02) 1080 (92.26)|317 (8.42) (

5 Discussion

New sequencing techniques produce large amounts of genomic sequences, in-
cluding sequences of individuals of the same species. Analyzing the structural
similarities and differences of those sequences is a difficult task. The compressed
de Bruijn graph is a suitable data structure for the pan-genome. Baier et al.
(2016) introduced bwt-based, an algorithm that is significantly better than its
competitors but still was not able to compute the compressed de Bruijn graph for
more than 7 human genomes on a machine with 128GB RAM. The peak mem-
ory consumption occurs during the construction of the BWT. Ilia Minkin et al.
(2016) introduced TwoPaCo. TwoPaCo does not use any suffix data structure,
instead uses a Bloom Filter and partitioning to adapt to the available memory.
Not only is this algorithm faster, it allows to run significantly bigger sets of input
strings. TwoPaCo was used with inputs of up to 100 human genomes.

As seen in figure 2 the compacted de Bruijn graph calculated by TwoPaCo
is not the same as the compressed de Bruijn graph. So the benchmarks are
questionable. TwoPaCo needs to be modified in a way that it calculates the
compressed de Bruijn graph. Its core is the Filter-Junction algorithm. Junctions
are almost the same as repeatNodes. If it would not take into account wether
or not the substring is the first or last k-mer of an input string, the positions of
the repeatNodes would be calculated. These could then be used with step 2 of
the cst-based algorithm to calculate the compressed de Bruijn graph.

References

Abouelhoda, Mohamed Ibrahim, Stefan Kurtz, and Enno Ohlebusch. “The en-
hanced suffix array and its applications to genome analysis”. In: International
Workshop on Algorithms in Bioinformatics. Springer. 2002, pp. 449-463.

Baier, Uwe, Timo Beller, and Enno Ohlebusch. “Graphical pan-genome analysis
with compressed suffix trees and the Burrows—Wheeler transform”. In: Bioin-
formatics 32.4 (2016), pp. 497-504. DOI: 10.1093/bioinformatics/btv603.
eprint: http://bioinformatics. oxfordjournals.org/content/32/4/
497 . full . pdf +html. URL: http://bioinformatics . oxfordjournals .
org/content/32/4/497 .abstract.

Bloom, Burton H. “Space/time trade-offs in hash coding with allowable errors”.
In: Communications of the ACM 13.7 (1970), pp. 422-426.

Burrows, Michael and David J Wheeler. “A block-sorting lossless data compres-
sion algorithm”. In: (1994).

Consortium, 1000 Genomes Project et al. “A global reference for human genetic
variation”. In: Nature 526.7571 (2015), pp. 68-74.

Ferragina, Paolo and Giovanni Manzini. “Opportunistic data structures with
applications”. In: Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on. IEEE. 2000, pp. 390-398.

Gog, Simon et al. “From theory to practice: Plug and play with succinct data
structures”. In: International Symposium on FExperimental Algorithms. Springer.
2014, pp. 326-337.

Gusfield, Dan. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge university press, 1997.

Marcus, Shoshana, Hayan Lee, and Michael C Schatz. “SplitMEM: a graphi-
cal algorithm for pan-genome analysis with suffix skips”. In: Bioinformatics
30.24 (2014), pp. 3476-3483.

Minkin, Ilia, Son Pham, and Paul Medvedev. “TwoPaCo: An efficient algorithm
to build the compacted de Bruijn graph from many complete genomes”. In:
arXiv preprint arXiv:1602.05856 (2016).

Minkin, Ilya et al. “Sibelia: a scalable and comprehensive synteny block genera-
tion tool for closely related microbial genomes”. In: International Workshop
on Algorithms in Bioinformatics. Springer. 2013, pp. 215-229.

Raphael, Benjamin et al. “A novel method for multiple alignment of sequences
with repeated and shuffled elements”. In: Genome Research 14.11 (2004),
pp. 2336-2346.

