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Abstract. The coalescent model is the result of thorough analysis of
the Wright-Fisher model. It analyzes the frequency and distribution of
coalescence events in the evolutionary history. These events approximate
an exponential distribution with the highest rate in the recent past. The
number of surviving lineages in a generation also increases the frequency
quadratically. Since the number of surviving lineages always decreases as
one goes further into the past, this actually strengthens the effect of the
exponential distribution.

This model is however incomplete in that it assumes a constant population-
size which is often not the case. Further analysis demonstrates that the
likelihood of a coalescence event is inversely proportional to the population-
size. In order to incorporate this observation into the model, it is possible
to scale the time used by the model in a non-linear way to the actual
time.

With that extension the coalescent model still has limitations, but it
is possible to remove most of those with similar changes. This allows
to incorporate things like selection, separated groups and heterozygous
organisms.

1 Motivation

When we want to consider how allele-frequencies change in an environment with
non-overlapping generations, random mating and no selection, there are a couple
of models to choose from: The Hardy-Weinberg model and the more advanced
Wright-Fisher model are probably the most well known ones.

Both have serious disadvantages though: While the applicability of Hardy-
Weinberg for real-world-populations is questionable at best, the Wright-Fisher
model is computationally expensive and cannot perform calculations from the
present into the past.

The solution to this is the coalescent model, that solves these problems by
analyzing the Wright-Fisher model in detail to allow us focusing on the relevant
aspects of it and perform calculations backwards in time while using much less
computational power.

The remainder of this paper is structured as follows: In the following section
we will look into simpler models that precede the coalescent model. In section
3 we will then develop the basic coalescent model from this and extend it for



non-constant population-sizes in section 4. After that we will mention further
possible extensions in section 5 and provide examples for real-world-usage in
section 6. In the final section we will then provide a short summary of the
key-points presented in this paper.

2 Introduction

2.1 Hardy-Weinberg

The Hardy-Weinberg model assumes an infinite population-size, random mating,
a diploid population and no selection.

The basic idea of the model is to look at the initial frequencies of all allele-
combinations in the population and to then calculate the frequencies of the next
generation if all individuals mate a random partner to create children with a
random allele-set (based on the alleles of the parents).

If the requirements for this model were met, the allele-frequencies would stay
constant over time. It is however obvious that the infinite population size reduces
the applicability of the model: Even if one defines a way to use frequencies with
an infinite set in a meaningful way, real-world-populations never have an infinite
size.

This drawback is the main-reason for us to look into different models like the
Wright-Fisher model.

2.2 Wright-Fisher

The Wright-Fisher model assumes a finite but constant population size, random
mating, non-overlapping generations and no selection.

It’s approach differs greatly from the Hardy-Weinberg model in that it introduces
specific generations and individuals. In its simplest form the model works on
haploid populations, though an extension to diploid populations is possible.

The basic idea is to create a list of individuals of the first generation. To calculate
the second generation one creates a second list of the same size and fills it by
selecting random individuals from the previous generation as parents and simply
copying them. It is important to understand that this approach allows to select
individuals in the old generation not just once but also either multiple times or
never.

One advantage of this approach is that it is easy to implement in software. The
following C++-code performs a complete step in four lines of actual code:
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Fig. 1. A possible evolutionary history under the Wright-Fisher model. By reordering
the individuals in each generation, it is possible to achieve a simpler visual structure
than the direct output of Wright-Fisher. On the top-left we see the entire history of all
individuals that lived. On the top-right we see individuals that have the surviving allele.
On the bottom-left only the individuals that have descendants in the current generation
remain. The individual in the most recent generation with just one individual is the
Most Recent Common Ancestor (MRCA). On the bottom-right we see some individuals
and their common ancestors marked. Every ancestor (orange) of several later individuals
(green) represents a coalescent event in the history.



void calc_next_gen(const std::vector<std::uint8_t>& old,
std: :vector<std::uint8_t>& out) {
std: :random_device rd;
std::uniform_int_distribution<std::size_t> dist{0, old.size()-1};
for(auto& individual: out) {
individual = old.at(dist(rd));
}
}

If we run multiple simulations, we will see that the frequencies do not only not
remain constant, but usually end up with a single remaining allele. Once there is
only one remaining allele it is naturally impossible for the other alleles to create
offspring, which means that they are extinct.

A closer mathematical inspection of the model has shown that, given enough
time, it will always converge into that state. The likelihood for an allele to end
up as the prevailing one is proportional to its initial frequency. This means that
an allele with an initial frequency of 25% will end up as the prevailing one in
25% of all possible simulations. The time until the simulation reaches that state
is inversely correlated with the population-size: The larger the population, the
longer it will take until all alleles are extinct.
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Fig. 2. A simulation of three alleles under the Wright-Fisher model. Initially every
allele has 1000 Individuals. The second allele prevails over the other two after 4596
generations.



3 The Coalescent

If we analyze the Wright-Fisher model bottom-up with a focus on coalescence
events, we get the coalescent model.

A coalescence event is an event where two roots of sub trees share the same
parent. Or, more formally: Given two Generations ¢ and ¢ 4+ 1, two individuals
c1, o from generation i 4+ 1 and an individual p from generation 4, so that p is
the parent of both ¢; and ¢y, means that there is a coalescence event between c;
and cs.

Since we are currently only considering haploid inheritance of a single gene, the
following things are obvious:

All descendants of ¢; and ¢y are also descendants of p.

All ancestors of p are also ancestors of ¢1, co and all their descendants.

— Together with their descendants both ¢; and co form a tree that is a sub tree
of the entire inheritance-tree, where ¢; and co are the respective roots.

— There are no common ancestors between individuals of the different sub trees

in a generation later than 1.

As a result of this we call p common ancestor of all its descendants.

If an individual is the common ancestor of all observed individuals (which may
well be the entire population) and there are no later such individuals, we call it
the Most Recent Common Ancestor or MRCA for short.

A common example for MRCAs are the so called Y-chromosomal Adam and the
mitochondrial Eve: Adam is the man from which the Y-Chromosome of all living
men descents and Eve is the Woman from which the mitochondrial DNA of all
living Humans descents. There are however a couple of problems with it, that
are mainly the result of the religious naming:

Some religious people jump to the conclusion that Adam and Eve are the
individuals mentioned in Jewish mythology, after whom they are in fact named.
This conclusion does however point to a severe misunderstanding of both theory
and anthropological evidence for multiple reasons: First and foremost the model
does not state that Adam and Eve lived at the same time. This already implies
the second problem, namely that they were not the only man or woman when they
lived but just the only ones who passed on their genes to the present. Furthermore
as MRCAs they are not the only individuals who passed on the genes in question
(Common Ancestor), but just the Most Recent ones. Finally there were other
previous individuals when Adam and Eve lived, who were MRCAs at that time
but are now reduced to common ancestors.

It is worthy to point out that the genes in question are subject to sexual inheritance
in a way that more or less resembles haploid inheritance despite belonging to
diploid organisms. If this were not the case, analysis would be harder and we
would have to resort to less plastic examples.



3.1 Derivation

We consider two generations G; and G;;1 in the Wright-Fisher model with a
population size of n.

The likelihood for two individuals for ¢;, co from the second generation to pick a
common ancestor in the previous generation is % This is because ¢; will pick
one parent p, leaving n — 1 individuals that are not parents. When ¢y then picks
a parent at random, the change to pick the same parent is trivially %

If we ask for the likelihood of picking a same ancestor in the previous two
generations, there are two ways to achieve that: The first one is for ¢; and ¢,
to pick the same parent. The likelihood for this is % The second way is for ¢;
and co to pick different parents, but the same grandparents. Since this will scale
badly when we ask about even more generations we will invert the question to
“How high is the likelihood that there was no coalescence event”. By subtracting
that value from 1, we can then answer the original questions.

To answer our new question, we simply need to know the likelihood that the
individuals and their parents both pick different parents in their generation. That
likelihood is ”T’l To get the combined likelihood we then take the product:

() ()= ()

Naturally this scheme works for any number ¢ of generations, so we can generalize

this to:
n—1\"
n

Given that, it is possible to derive that the expected time between coalescence
events is n generations. To simplify the model we can rescale that by introducing
a variable 7 = % and replace ¢ with 7n. This results in a representation, in which
one unit of coalescent-time corresponds with about one coalescence event:

n—1 [tn]
n
As n approaches infinity this term happens to approach e~7, clearly showing that
the likelihood for two lineages to stay distinct, shrinks exponentially over time.

T

Generalizing this to more lineages happens to be easy as well: When we look
back for the likelihood of two lineages to stay distinct in the previous generation,
we can easily extend this to the likelihood of three alleles staying distinct, by



multiplying it with the likelihood that the third lineage will have a distinct parent
from the other two which happens to be "T’Q, giving us the following formula:

n—1 n-—2
X

n n

This is because in order to remain distinct, the first individual may choose any
parent, the second any parent but the parent of the first and the third any parent
but the parents of the first two. Using this scheme, we can extend the formula to
an arbitrary number k of individuals:
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11—
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It is important to understand that the number of lineages with living descendants
(k) may be much smaller than the population-size (n) in any given generation.
This is because with every coalescence event, there is also at least one individual
(and thereby lineage) in the previous generation that does not procreate (in the
constant-population-size model). Therefore any coalescence event that such an
individual was part of becomes irrelevant to the simulation and can be ignored.
Therefore k will frequently be much smaller than n. If this is the case, it is
possible to use the following approximation:

kiln—zwl_@_l_k(k—l)
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Where (’2“) is the binomial coefficient, aka the number of ways to pick two lineages
from a set of k lineages. This number is about quadratic to k, so we can say
that the likelihood for k lineages to remain distinct in one generation shrinks

quadratically with k.[1]

We can estimate the expected time to the MRCA between k lineages as the sum
of the expected coalescence times between the individual coalescence events:

ZE[T(k)]:kz_:Qk(;l):Q—z
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It’s easy to see that this time is lower than twice the time for just two lineages,
which fits well with the previous claim that the coalescence rate becomes expo-
nentially slower as one goes back in time. It also means that more than half the
tree-height is usually spend with just two lineages, whereas most lineages will
find their common ancestors relatively fast.



The above is a description for a Markov-process in which each complete set of
lineages that exist at some point represents a state and just the number of lineages
and individuals define the likelihood for a state-change. The important property
here is to understand that the likelihood for a state-change is independent from
the time of any previous state-changes, obliterating the need to consider it during
computation and analysis.

3.2 Predictions

The result of this is, that the trees created by the coalescence model will usually
contain few deep bifurcations with most events happening in the recent past.
More specifically the number of relevant lineages shrinks exponentially with the
number of generations and quadratically with the number of individuals.

Figure 3 provides a visual example of this.
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Fig. 3. Exemplary coalescence trees for n=32: Note the small number of deep bifurca-
tions compared to the large number of recent events.[4]
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To sum everything so far up:

— The typical history created by the coalescent model has most of its activity
in the recent past and is therefore a tree with only a small number of deep
bifurcations.

— The coalescent is a likelihood-based model. This means that every thinkable
history is possible but potentially extremely unlikely in it.

— Unlike the Wright-Fisher model, the coalescent allows to do calculations
backwards in time.

— Thanks to the fact that the model requires no calculations for single individu-
als and extinct lineages, it is more efficient to compute then the Wright-Fisher
model.

In order to use the unmodified coalescent model, we need to assume a finite but
constant population size, random mating, non-overlapping generations, at most
one coalescent-event per generation and no selection.



4 Non-constant-population-sizes

The coalescent model provides a useful tool to generate plausible histories for
individuals in a population of constant size, but a look into reality easily demon-
strates that this is often unrealistic. Consider figure 4 that shows the total human
population on earth: For 8000 years, it is almost impossible to make out the line,
while the number explodes in the last four centuries. As we have seen with the
Hardy-Weinberg model, simplifications, even if they appear to be minor, can
easily give entirely wrong results. In the following we will see, that this is the
case with constant population-sizes as well.

World population, billions
w

0 t t t t t
10,000 BC 8000 6000 4000 2000 AD1 1000 2000

Fig. 4. Human population on earth over time. As it is obviously not even remotely
constant, the classical coalescent model is unable to create sensible interpretations.[5]

The target of our remodelling is to be able to make statements about non-
constant, but known population-sizes.

When considering the previously seen formulas for the likelihood of coalescence
events, we can easily see that the likelihood strongly increases with shrinking
population-size:

kiln—le_@_l_k(k—l)
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What this means is that the coalescent-rate changes over time. The solution to
this is to simply rescale the time.



Recall that we defined our coalescence time as 7 = % What this meant was that
one unit of 7 corresponds to t actual generations.

In order to deal with changing population-sizes we will now redefine this conversion
to something that scales with the population-size, namely:

‘1
T Z;m
Note that for a constant population-size, the coalescence times are equal, as this
equation than simplifies to 7 = % This means that special case remains as it
is. The results change however if the population-size is not constant. Take for
instance a history of five generations with 4, 4, 5, 6 and 6 individuals respectively.
With the model for a constant population size we would calculate the average size
(5) and thereby conclude that the history covers 7 = g = 1 units of coalescence
time. With the new model we will instead calculate the time like this:
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We see that even though the average size was the same, the actual evolutionary
history uses slightly more coalescence time, due to the greater effect of the smaller
generations. If we look at the formula again, we can see that the coalescence
time that a generation corresponds to is inversely proportional to its size. Or
in simpler terms: A population with twice the size will get halve the coalescence
time.

4.1 Predictions

This has effects for an exponentially growing population: As the generations in
the distant past are much smaller than the more recent ones, rescaling the time
in the described way will assign most of the coalescence time to those long past
generations. This means that the previous result that most coalescence events
are usually recent has to be put into perspective.

Figure 5 provides us with a simple visual representation of the reduced time
in larger generations. Furthermore we can see the longterm-effects of different
population-growth in figure 6.

4.2 Applicability

The rescaling of the time does in fact converge against the underlying theory
for a growing population-size. Practically speaking it is also sufficiently close for
some purposes, making it a viable option.
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Fig. 5. Population-size vs scaled coalescence time. On the left we see ten generations of
an exponentially growing population. On the right we see a to-scale bar-chart that shows
how much time the generation corresponds to. Note that the first three generations
make up almost halve the time.

One of the plausible things that this approximation tells us, is that for a rapidly
growing population, almost no coalescence time passes, which disables the genetic
drift during that time.

On the other hand it is important to also understand the limitations of this
approach. Marjoram and Donnelly[3] have for instance pointed out, that the
common star-like structure that it creates is only realistic if the exponential
growth starts from a tiny population-size on, that is to small to use it on human
populations.

5 Further Extensions

Aside from non-constant population-sizes the coalescent model also supports
many other extensions to reduce its limitations and depend less on questionable
assumptions. We will present some of them in the following:

One assumption that often turns out to be unrealistic is for instance random-
mating. Realistically speaking, most populations are structured in some way or
another, for example into tribes of different sizes. These structures often take
the form of clusters with reduced interchange between them. One way to model
this is to add parental patches to the Wright-Fisher model with coalescence only
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Fig. 6. Exponentially growing and constant populations. Note that the time in the
plot flows from right to left! The tree of the constant population has most of its inner
nodes far to the bottom with only one very deep bifurcation, as the regular coalescence
predicts. The tree for the exponentially growing population on the other has all of its
coalescence events in the distant past, due to the non-linear time-scale. [4]

occurring if two individual pick the same patch and the same parent. This can
be analyzed in a similar way to the regular coalescent and allows similar usage.

It is easy to imagine that this kind of structure can have a great effect on
the overall model, as the effective population-size can be vastly reduced in a
certain cluster, implying a vastly increased coalescence-rate. A directly related
effect to this is that the individual clusters may have different size and thereby
different-coalescence-rates, further complicating the situation.

Another important limitation is that until now we have only considered haploid
inheritance. It is however simple to view a diploid population of size n as a
haploid population of size 2n divided into n patches of two individuals. While a
naive approach would allow self-fertilization, a more thorough analysis can deal
with that and comes to the result that a diploid organism needs about twice the
time until there is a single MRCA, which does exist.

Introducing males and females into this model adds yet another division of the
population, that we can deal with in a similar fashion as before. If the number of
males and females is about equal, an analysis of autosomal genes will come to
the same result for the expected time to the MRCA (2n generations).



Using further analysis, we can even add things like selection, balancing selection
or recombination to the model, thereby allowing to lift most of its the initial
limitations, except for the non-overlapping generations.

6 Usage

Due to its wide applicability and extendability the coalescent model is used often.
One prove of this is the English Wikipedia’s long list of programs that make use
of it:

BEAST, COAL, CoaSim, DIYABC, DendroPy, GeneRecon, genetree, GENOME,
IBDSim, IMa, Lamarc, Migraine, Migrate, MaCS, ms & msHOT, msms, Recodon
and NetRecodon, SARG, simcoal2, TreesimJ. [6]

Another number that shows the high significance of this model, is that a google-
scholar-search turns up with 59200 results.

One example for such a paper is “mtDNA variation predicts population size in
humans and reveals a major Southern Asian chapter in human prehistory“[2]
where Atkinson et al. used the model to reconstruct some parts of the human
evolutionary history. That paper can also serve as a case-study for the practical
use of the model in that it does not only show where the coalescent model has
its strength but also demonstrates its weaknesses: While most of the population-
size-estimates that they generated appear to more or less match anthropological
estimates, we can easily see in figure 7, that they are far off in the case of Oceania.
The authors explain this as a result of tribal structures that effectively divided
the population into smaller groups, thereby preserving genetic diversity stronger
than the total population-size would seem to imply. As previously mentioned, it
is in fact possible to model such things as well, but it may not always be easy to
do so in a realistic way.

7 Summary

The coalescent is basically the result of analyzing the Wright-Fisher model with
statistical methods. It makes certain predictions, that appear to be valid in most
of its use-cases, as long as the basic-assumptions of the used variant are met.

The most important aspects that we presented in this article are:

— If the population-size is constant, coalescent-events are, with exponential
likelihood, recent.

— The number of historically relevant coalescence events scales quadratically
with the number surviving lineages.

— The results of the regular coalescence are not applicable for non-constant
population-sizes, but it is possible to bypass this problem by rescaling the
time.
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Fig. 7. Predictions of the coalescent model vs. anthropological estimates. [2]



— If one rescales time, the simulated time for a generation is inversely propor-
tional to its size.

— The model does not perform computations for single individuals, single
generations or extinct lineages and therefore needs less computational power
than the underlying Wright-Fisher model.

Especially as a result of the last point, but also because of its simple extendability
the model is widely used in population-genetics.

Sources

Unless otherwise noted, the content of this report is based on the paper “Coales-
cent Theory”[4] by Magnus Nordborg,.

I created all images without citations myself.

References

1. Goncalo Abecasis. Introduction to coalescent models. 2006.

2. Quentin D Atkinson, Russell D Gray, and Alexei J Drummond. mtdna variation
predicts population size in humans and reveals a major southern asian chapter in
human prehistory. Molecular biology and evolution, 25(2):468-474, 2008.

3. Paul Marjoramd and Peter Donnelly. Human demography and the time since
mitochondrial eve. Institute for Mathematics and Its Applications, 87:107, 1997.

4. Magnus Nordborg. Coalescent theory. Handbook of statistical genetics, 2001.

5. El T. Population curve. via Wikimedia Commons [https://commons.wikimedia.
org/wiki/File:Population_curve.svg].

6. Wikipedia. Coalescent theory — Wikipedia, the free encyclopedia.


https://commons.wikimedia.org/wiki/File:Population_curve.svg
https://commons.wikimedia.org/wiki/File:Population_curve.svg

	The Coalescent Model

