
E F F I C I E N T A N D M A S S I V E LY PA R A L L E L
I M P L E M E N TAT I O N O F T H E E V O L U T I O N A RY

P L A C E M E N T A L G O R I T H M

Master thesis of

Pierre Barbera

At the Department of Informatics
Chair of High Performance Computing in the Life Sciences

May 2016

Reviewer: Prof. Dr. Alexandros Stamatakis
Second Reviewer: Prof. Dr. Achim Streit
Advisors: Dr. Tomas Flouri

KIT – University of the State of Baden-Wuerttemberg and National Research Center
of the Helmholtz Association www.kit.edu

Pierre Barbera: Efficient and massively parallel implementation of the Evo-
lutionary Placement Algorithm, © May 2016

A B S T R A C T

Phylogenetic placement is an important method in the emergent field
of metagenetics. It is used to establish abundance- and diversity pro-
files of microorganisms for a given environment. The Evolutionary
Placement Algorithm (EPA) is an algorithm that performs phyloge-
netic placement of query sequences on a reference tree and reference
alignment in linear time and space.

Previous implementations of the EPA achieved high parallel effi-
ciency on shared memory systems. In this work, I present Parallel-
EPA (P-EPA): a complete reimplementation of the EPA that performs
similarly on shared memory systems. Additionally, I present a design
that enables parallelization using distributed memory systems such
as supercomputers and clusters. This represents the first paralleliza-
tion scheme that scales with the size of the tree, enabling phylogenetic
placement on extremely large reference trees.

In my evaluation I show that my implementation produces place-
ment results that are highly similar to those of its two main competi-
tors, pplacer and RAxML.

Z U S A M M E N FA S S U N G

Phylogenetische Platzierung ist eine wichtige Methode im Gebiet der
Metagenetik. Sie wird verwendet, um Häufigkeits- und Vielfältigkeits-
profile von Mikroorganismen eines gegebenen Milieus zu erstellen.
Der Evolutionary Placement Algorithm (EPA) ist ein Algorithmus,
der phylogenetische Platzierungen von Sequenzen auf Referenzbäu-
men und deren Referenzalinierungen in linearer Zeit-, und mit lin-
earem Speicherbedarf durchführt.

Vorherige Implementierungen des EPA erreichten eine hohe paral-
lele Effizienz auf Rechnersystemen mit gemeinsam genutztem Spei-
cher. In dieser Arbeit stelle ich Parallel-EPA (P-EPA) vor: eine kom-
plette Neuimplementierung des EPA, welche auf Rechnersystemen
mit gemeinsam genutztem Speicher eine vergleichbare Effizienz vor-
weist. Zusätzlich präsentiere ich einen Entwurf, der die Parallelisie-
rung auf verteilten Rechensystemen wie Supercomputern und Rech-
nerbündeln ermöglicht. Dies stellt das erste Parallelisierungschema
dar, das mit der Größe des Baumes skaliert und somit phylogeneti-
sche Platzierungen auf extrem großen Referenzbäumen ermöglicht.

In meiner Auswertung zeige ich, dass meine Implementierung Re-
sultate produziert, die vergleichbar mit deren der Konkurrenzpro-
gramme pplacer und RAxML sind.

iii

[...] whilst this planet has gone cycling on
according to the fixed law of gravity,

from so simple a beginning endless forms
most beautiful and most wonderful

have been, and are being, evolved.

— Charles Darwin, On the Origin of Species [5]

A C K N O W L E D G M E N T S

I want to thank Alexandros Stamatakis for being my advisor for this
work, as well as everyone in the SCO group at the Heidelberg In-
stitute of Theoretical Studies. This includes (in no particular order)
Lucas Czech, Alexey Kozlov, Tomas Flouri, Diego Darriba, Paschalia
Kapli, and Sarah Lutteropp. This work would not have been possible
without their support.

I also want to thank Erick Matsen and his group at the Fred Hutchin-
son Cancer Research Center in Seattle for hosting me for a month, and
the Klaus Tschira Foundation for making the trip possible.

v

C O N T E N T S

1 introduction 1

2 basic principles 5

2.1 Molecular Data 5

2.2 Phylogenetic Trees 6

2.3 Phylogenetic Likelihood 7

2.3.1 Models of Nucleotide Evolution 8

2.3.2 The Felsenstein Pruning Algorithm 9

2.4 Tree Search and Parameter Optimization 12

2.5 Phylogenetic Placement 13

2.5.1 jplace File Format 15

2.6 Metrics on collections of Placements 16

2.7 Distributed Computing 17

3 algorithms 19

3.1 Placement 19

3.1.1 Preprocessing 19

3.1.2 Query Placement 21

3.1.3 Result Filtering 23

3.2 Prescoring Heuristic 24

4 related work 25

4.1 RAxML-EPA 25

4.2 pplacer 26

5 design 29

5.1 Parallelization over Edges 29

5.2 Distributed Pipeline 30

5.2.1 A Scheduling Algorithm 33

6 evaluation 37

6.1 Verification 37

6.2 Serial Runtime 39

6.3 Efficiency 41

7 summary 43

7.1 Implementation Notes 43

7.2 Future Work 43

a appendix 45

a.1 P-EPA Command Line Interface Manual 45

bibliography 47

vii

L I S T O F F I G U R E S

Figure 1 Example application of phylogenetic placement. 2

Figure 2 Basic terminology of DNA sequence data. 5

Figure 3 An example for a phylogenetic tree. 6

Figure 4 A general depiction of a Markov chain process
for nucleotide evolution. 8

Figure 5 An example phylogeny for which the condi-
tional likelihood is to be computed. 10

Figure 6 An illustration of the Felsenstein Pruning Al-
gorithm. 11

Figure 7 Basic terminology of tree extension on a given
edge of the reference tree. 16

Figure 8 Illustration of Conditional Likelihood Vector
(CLV) precomputation. 20

Figure 9 Basic placement of a query sequence by exten-
sion of the tree at a given edge. 22

Figure 10 Post processing of placements during the fil-
tering phase. 23

Figure 11 Example of a possible mapping of reference
tree edges to compute threads. 30

Figure 12 Communication between the placement-, and
aggregation stages in the pipeline. 32

Figure 13 Pipepline without prescoring. 32

Figure 14 Pipepline with prescoring. 33

Figure 15 Average query Phylogenetic Kantorovich-Rubinstein
(K-R) distances between outputs of tested im-
plementations. 39

Figure 16 Comparision of execution times of different phy-
logenetic placement software. 40

Figure 17 Speedup of the multi-thread implementation. 41

viii

A C R O N Y M S

BLAST Basic Local Alignment Search Tool

BLO Branch Length Optimization

CLV Conditional Likelihood Vector

DNA Deoxyribonucleic Acid

EMD Earth Mover’s Distance

EPA Evolutionary Placement Algorithm

FPA Felsenstein Pruning Algorithm

GTR Generalized Time Reversible

INLP Integer Nonlinear Programming

JSON JavaScript Object Notation

LWR Likelihood Weight Ratio

MC Markov Chain

ML Maximum Likelihood

MSA Multiple Sequence Alignment

N-R Newton-Raphson

NGS Next Generation Sequencing

NUMA non-uniform memory access

P-EPA Parallel-EPA

K-R Phylogenetic Kantorovich-Rubinstein

PLL Phylogenetic Likelihood Library

RAM Random Access Memory

ix

1
I N T R O D U C T I O N

In recent years, analyses of genetic material have become increasingly
important in biological and clinical research. In part, this is due to
the advent of cheap Deoxyribonucleic Acid (DNA) sequencing. DNA
sequencing is the determination of the order of nucleotides that make
up a DNA molecule.

DNA plays perhaps the most central role in all of biology. It is the
blueprint that governs the growth and behavior of cells. As such, de-
fects in the DNA of an organism have been identified as the cause of
a number of diseases. For example, a genetic mutation in the BRCA2-
gene leading to its deactivation significantly increases the chances of
developing breast cancer. [13]

While sequencing has been possible since the 1970s [28], only re-
cently have advances, dubbed as Next Generation Sequencing (NGS),
driven it to the forefront of research. The sequencing of the first com-
plete human genome [34] in 2001 took over a decade of global effort.
After its completion, the cost for sequencing a full human genome
was estimated to be around $100M. In contrast, nowadays this cost
has decreased to just above $1000 [36].

Because of the richness of genetic data, and its high availability due
to NGS, its analysis is the goal of many research projects. For instance,
phylogenetic studies try to infer evolutionary trees of species, based
on data obtained by sequencing specific regions of their genomes [9].
Doing so can reveal the evolutionary history between species and tell
us how they are related to one another.

Phylogenetics can also be used to find out how a species relates to
an already existing evolutionary tree, or phylogeny. This is the goal of
the EPA. It tries to find the most likely position of a given anonymous
sequence on a phylogenetic tree.

This can be especially useful when encountering a new species, or
piece of viral DNA, as illustrated in Figure 1. During outbreaks of
new viruses, a race begins to identify effective treatments, cures, and
eventually, vaccines. Finding the phylogenetic placement of a new
virus can help to quickly identify its characteristics and thus develop
possible treatments.

This was the case during a viral outbreak in New York in 1999 [12].
Initially, physicians diagnosed it as a type of St. Louis encephalitis. Phy-
logenetic analysis of the viral sequences revealed it to be a strain of
the West Nile virus [16], a virus rarely seen outside Africa and the
Middle East.

1

2 introduction

F

E

D

C

B

A

Phylogeny of
known Viruses

X
New Virus

?

Figure 1: Example application of phylogenetic placement.

Another common application of phylogenetic placement lies in the
field of metagenetics. In metagenetic studies, genetic data is extracted
directly from environmental samples. As such, the resulting data usu-
ally originates from a high number of different organisms. Often, a
central goal is to establish diversity profiles of the samples [19, 30].
In clinical studies, these may be used to infer correlations between
bacterial composition and disease status [30].

The EPA facilitates such studies by informing the user how the
sequences relate to known species. Downstream analysis can use its
output to determine what kind of species are present. This is called
taxonomic classification.

Non-phylogenetic methods for taxonomic classification typically
use the Basic Local Alignment Search Tool (BLAST) [1, 15] to find
similar sequences. However, they lack the detailed placement loca-
tion information that phylogenetic approaches provide.

In this work, I present a new implementation of the EPA. A primary
goal in this work was to extend previous parallelization schemes for
the algorithm to massively parallel, distributed computer systems.
In doing so my design achieves high scalability, allowing placement
to be performed on reference trees of almost arbitrary size, given
enough computational resources.

In Chapter 2 I introduce the basic principles and terminology used
throughout this work. This also includes some background on the
type of biological data used as input. I mainly focus on the basics
of phylogenetic inference as well as the basics of phylogenetic place-
ment.

introduction 3

In Chapter 3, I outline the algorithmic structure of the EPA and its
time-saving extensions, as they were previously described by Berger
et al. [2]. In Chapter 4, I briefly outline the differences of my work to
other programs implementing phylogenetic placement.

The following Chapter 5 introduces the parallel design used in this
work. I present schemes for EPA parallelization in both, shared, and
distributed memory systems.

Finally, in Chapter 6, I present the results of the evaluation and
verification of my software. I conclude with a summary in Chapter 7.

2
B A S I C P R I N C I P L E S

The following chapter aims to cover the basic principles and method-
ologies used in this work. I cover fundamental terminology regarding
the type of biological data used, as well as the principles of the statis-
tical methods deployed in phylogenetic inference and phylogenetic
placement. Additionally, I briefly cover the basics and terminology
of cluster computing, the key target environment of the software I
designed in this thesis.

2.1 molecular data

Molecular data, primarily sequences of Deoxyribonucleic Acid (DNA),
dominate analysis tasks in the field of bioinformatics. DNA is a chain
of molecules that makes up the genetic material of an organism. It
consists of four different nucleotides, or bases: Adenine, Thymine,
Guanine, and Cytosine, or A, T , G, and C for short.

While linkage of bases occurs along the chain, they are also mir-
rored in a duplicate copy of the chain. The two chains are connected,
forming the famous DNA double helix. The bases however do not
pair exactly: A will only correctly pair with T , and C with G, respec-
tively.

DNA serves as the molecular blueprint for all molecules produced
by a living cell. Contiguous regions of DNA that encode for a specific
molecule, such as a protein, are called genes. The collection of genes
of an organism governs its physical characteristics. As such, DNA
is the basis on which speciation by natural selection operates. This is
because genes, or variations thereof, that are beneficial to the survival

GATACA

ATACA

GATAA
a)

⇒
G A T A C A

- A T A C A

G A T A - A
b)

Figure 2: Basic terminology of DNA sequence data. a) a collection of DNA se-
quences, comprising characters representing the four nucleotides A,
T, C and G. b) a Multiple Sequence Alignment (MSA) for these se-
quences. The alignment process inserts gap characters -. A column
in the alignment, as highlighted by the rectangle, is called a site in
the alignment.

5

6 basic principles

and reproduction of an organism, are more likely to propagate to
subsequent generations.

Significant advances in sequencing technologies, which determine
the order of the DNA bases, have recently generated an abundance of
sequence data. Sequencing produces decoded, textual, sequence data
consisting of short subsequences of genes, up to complete genomes.

Figure 2 outlines some basic DNA terminology. A common way
to process a collection of related sequences is to infer a Multiple Se-
quence Alignment (MSA). As the name suggests, it is the result of an
alignment procedure. A MSA process arranges sequences in a matrix-
style representation. It assigns each sequence to a row, and shifts the
characters of the sequences such that similar sub-sequences share the
same columns. This is done because after alignment, columns in the
MSA, henceforth called sites, shall be homologous.

Homology is the property of descent from a common ancestor. Con-
sequently it is of central importance in analyses trying to reconstruct
ancestry. Phylogenetic inference is one such method, and it relies
heavily on the assumption of homology at MSA sites, which is usu-
ally its primary input.

2.2 phylogenetic trees

Human Chimp

Mouse Crocodile Bird

Figure 3: An example for a phylogenetic tree.

Phylogenetic trees, or evolutionary trees, are graphs showing the
evolutionary relationships of multiple species that are represented as
tips of the tree. Typically these will be extant, or surviving, organisms.

Following the edges of the graph, as illustrated in Figure 3, one can
trace evolutionary history. Inner nodes of the graph are divergence
events and represent the common ancestor of all organisms below
them.

The closer two organisms are in the graph, the more closely they are
related. For example, Figure 3 shows, that Humans are more closely
related to Chimpanzees than to Birds, as Humans and Chimps share
a more recent common ancestor.

2.3 phylogenetic likelihood 7

Phylogenetic trees can be rooted or unrooted. Figure 3 shows a rooted
phylogenetic tree. Starting from the root of the tree at the top of the
graph, every inner node splits the rest of the tree in two subtrees. This
is also called a bifurcation.

Any rooted tree can be unrooted by simply removing the root node
and connecting its two child nodes by a single branch. Conversely,
every unrooted tree can be rooted by placing a new inner node on
any chosen branch of the tree. Such a node is referred to as the virtual
root of an unrooted tree.

Methods to infer such trees can use different input data. While the
first methods used vectors describing the presence/absence of mor-
phological traits in an organism, modern methods rely on molecular
data, such as DNA or amino acid sequences.

In principle, the majority of methods for inferring phylogenies will
do so by successively clustering organisms by similarity of their rep-
resentative sequences. Simple methods try to minimize the changes
required to transform an organism’s sequence into its closest neigh-
bor in the tree. One such method is the parsimony criterion, which
aims to minimize the number of evolutionary steps required to ex-
plain the data for a given tree.

More advanced methods use statistical models of molecular evolu-
tion to simulate the stochastic changes of nucleotides over time. As a
consequence, they assign different possible evolutionary histories to
respective probabilities, and through this compute the likelihood of a
tree.

2.3 phylogenetic likelihood

The phylogenetic likelihood is used as the objective function in tree
search. Tree search is the traversal of the parameter space that deter-
mines the topology and characteristics of a phylogenetic tree. Doing
so efficiently is the central issue in software implementing phylo-
genetic inference (such as RAxML [32]). Section 2.4 will cover tree
search and its challenges in greater detail. First, I will elaborate on
the phylogenetic likelihood itself.

Like for most optimization problems, finding the best tree requires
some function to select among two or more distinct trees. In likeli-
hood based methods, this function is derived from the odds ratio [9]

P(T1|D)

P(T2|D)
=
P(D|T1)

P(D|T2)

P(T2)

P(T2)
(1)

between trees T1 and T2 given the data D. In phylogenetics, D is
the MSA described in Section 2.1. Using Equation 1, we can compare
two proposed trees by their posterior probability P(T |D).

To calculate the ratio, we need to calculate its two terms. The first is
P(T), also called the prior probability. This is the probability of observ-

8 basic principles

A C

G T

λA,C

λC,T

λT ,G

λA,G
λA,T

λG,C

πA πC

πG πT

Figure 4: A general depiction of a Markov chain process for nucleotide evolution.
λx,y, with x,y ∈ {A, T ,C,G}, denotes the rate of transitioning from
state x to state y for a given time step, and is called the transition
rate. πx is the special case λx,x, called the stationary frequency. For
reasons of legibility, we assume λx,y = λy,x.

ing the tree T prior to the evaluation of any data. The second term
is P(D|T), or the probability of observing the data D, given a tree T .
This is called the likelihood and, not surprisingly, it is the focus of the
Maximum Likelihood (ML) branch of phylogenetics.

With an increasing volume of independent observations, the likeli-
hood P(D|T) is the product of these individual observations [9]:

P(D|T) =
∏
i

P(D(i)|T) (2)

Consequently, the more data is available, the more the likelihood
term will dominate the posterior probability P(T |D) of the tree under
the given data. This is a central premise behind ML: given enough
independent observations of the data, the prior probability becomes
negligible.

Before discussing in detail how ML methods compute the overall
likelihood of a tree, it is important to discuss how we model changes
in nucleotide sequences over time.

2.3.1 Models of Nucleotide Evolution

In nature, genetic material can change over time, through mecha-
nisms such as, for instance, imperfect replication, or repair, of DNA.
Over time, and successive generations, two populations of organisms
that at one point were practically identical, can start to diverge, given
that no, or little, interbreeding occurs. If the organisms have diverged
past a certain point, biologists may consider them as being separate
species. This is the process of speciation, and as discussed in Sec-
tion 2.2, it is the defining feature of phylogenetic trees. Such events
are represented by the inner nodes in the tree.

2.3 phylogenetic likelihood 9

Thus, to evaluate the likelihood of a tree, based on genetic data,
one needs to take into account this change of nucleotides over time.
For statistical methods, a first step in developing such a model is
to quantify single nucleotide changes. This done by the rate λx,y de-
scribing the transition of a base x to base y, where x,y ∈ {A, T ,C,G}
in time dt. Henceforth we will denote the state alphabet {A, T ,C,G} as
N. The special case λx,x, denoted as πx, is the frequency with which
the Markov process remains in state x. Consequently, it is called the
stationary frequency.

We can depict the four possible DNA states, with respective tran-
sition rates between them, as shown in Figure 4. In doing so, and
by assuming that the mechanism of nucleotide change is a stochas-
tic process, we can construct a Markov Chain (MC), which forms the
basis of most statistical models of evolution.

Also, most models assume that the MC is time reversible. For a MC
to be time reversible, the transition rate from state x to y must be
equal to the transition rate from state y to x:

πxλx,y = πyλy,x (3)

Some models, such as JC69 [17] or F81 [7], additionally constrain
the possible choices of λy,x. The model used in this work allows the
greatest freedom to choose values for λ and π, while still adhering
to time reversibility, and is called the Generalized Time Reversible
(GTR) [33] model.

Next, we need to define a quantity of how many state changes
occur between nodes in the phylogenetic tree. These are usually rep-
resented as the branch lengths, denoted as v here. It is the rate at
which a nucleotides change is expected to occur on average along the
sequence.

Many biological processes influence v, such as the frequency of
DNA replication, environmental pressures, and time.

2.3.2 The Felsenstein Pruning Algorithm

Given a Markov model M and a branch v, we can compute Px 7→y(v)

to be the probability of a nucleotide transitioning from state x into
state y after moving along a branch v. As phylogenetic trees have
inner nodes, whose state we do not know, a central point of likeli-
hood calculations on trees is to account for these unknown states.
The phylogenetic likelihood method does so by summing over the
probabilities of every possible state z of an inner node.

Consider the following scenario, depicted in Figure 5. We have an
inner node k that is connected by branches vl and vm to tip nodes l
and m.

10 basic principles

k z

r

j

l
T

m

G

vlvm

Figure 5: An example phylogeny for which the conditional likelihood is to be com-
puted. z denotes the possible states at node k at a given site in the
underlying MSA. The tip nodes l and m are depicted with their
states T and G, at the same site in the alignment. vl and vm denote
the branch lengths. As the states of l and m are known, because
they are tip nodes, the conditional likelihood at node k to be in
state z for a given site in the MSA can be computed according to
Equation 4.

We now want to calculate the likelihood of the possible states z
at the inner node k at a given site (i) in the MSA. Suppose that we
know the states of the tip nodes l and m at site (i) to be T and G,
respectively. The likelihood is then calculated as the product of the
transition probabilities of the inner state z toward the tip states of l
and m:

L
(i)
k (z) = Pz7→G(vm)Pz7→T (vl) (4)

Equation 4 is called the conditional likelihood Lk(z) at node k.
For any given tip node t in the tree with a corresponding sequence

s = s1s2 . . . sn, where n is the number of sites in the MSA, the condi-
tional likelihood is defined as

L
(i)
t (z) =

1, z = si

0, z 6= si
(5)

Using this, we can extend Equation 4 to work at an arbitrary inner
node k by factoring in the likelihoods L

(i)
l (xl) and L

(i)
m (xm) of the

possibly unknown states xl and xm at the child nodes l and m for
site (i) in the MSA:

L
(i)
k (xk) =

 ∑
xl∈N

Pxk 7→xl
(vl)L

(i)
l (xl)

×
 ∑

xm∈N

Pxk 7→xm(vm)L
(i)
m (xm)


(6)

2.3 phylogenetic likelihood 11

L
(i)
r (xr) =∑

xk
P(. . .)

×
∑

xj
P(. . .)

L
(i)
k (xk) =∑

xl
P(. . .)

×
∑

xm
P(. . .)

L
(i)
j (xj)

L
(i)
l (xl)L

(i)
m (xm)

r xr

k xkj
xj

l
xl

m
xm

Figure 6: An illustration of the Felsenstein Pruning Algorithm. The framed part
in the upper right shows a phylogeny with three tips. The ap-
plication of the Felsenstein Pruning Algorithm (FPA) mirrors the
topology of the tree exactly. This is illustrated in the larger pic-
ture. Equation 6 is used to compute the conditional likelihoods at
the inner nodes r and k. The recursion terminates at the tips of
the phylogeny as their state is known. At the tips, the conditional
likelihood is set according to Equation 5.

12 basic principles

Equation 6 is referred to as the Felsenstein Pruning Algorithm
(FPA) [8]. Note its recursive nature, further illustrated in Figure 6:
it follows the structure of the tree exactly, such that starting at the
root, it computes different subtrees independently of each other. This
allows for efficient computation of the likelihood of a site, and by
extension, the tree.

To calculate the total site likelihood for site (i) at node k, we sum
over all possible states xk at node k, multiplied by the base frequency
πxk

of a given state:

L
(i)
k =

∑
xk∈N

πxk
L
(i)
k (xk) (7)

Consequently, the full tree likelihood is, once pruning has com-
puted every site (i) at the root node r, simply the product of the site
likelihoods, where n is the number of sites in the underlying MSA:

P(D|T) =

n∏
i=1

L
(i)
r (8)

For a given node k, we refer to a vector of L(i)
k over all sites (i) in the

alignment as a CLV. The implementation of programs for calculating
phylogenetic likelihoods mirrors this definition exactly, and as such,
it represents an important notation in this work.

2.4 tree search and parameter optimization

In the previous section, I described how to compute the likelihood of
a tree. This did, however, not cover how to find the most likely tree.

The number of possible tree topologies grows super-exponentially
with the number of species at the tips. As Felsenstein shows [9], for n
species the number of possible unrooted, bifurcating tree topologies
is

1× 3× 5× 7× · · · × (2n− 5) (9)

meaning, that for only 20 input sequences there will already be
about 2.22× 1020 possible trees. Contrast this with the fact that cur-
rently it is not unusual to infer trees with thousands of species [14,
29, 18].

Exploring this search space constitutes the central operation of tree
inference programs such as RAxML [32]. Typically, they operate in
two phases, which alternate iteratively (given an initial topology and
parameter configuration):

2.5 phylogenetic placement 13

1. optimize the branch lengths of a given topology, as well as the
model parameters of the model used

2. optimize the topology of the tree, given the model parameters

A common method to perform Branch Length Optimization (BLO)
is Newton’s method, also known as the Newton-Raphson (N-R) proce-
dure, which is an iterative approximation algorithm to determine the
root(s) of any given real-valued function. In our case, this function is
an extended form of the phylogenetic likelihood P(D|T , v), where v is
the current branch length value of the branch being optimized. As we
want to find the maximum of the likelihood, we use the N-R method
to find the root of the likelihoods first derivative P ′(D|T , v).

N-R approximates values for v, using P ′(D|T , v) and its derivative
P ′′(D|T , v), iteratively:

vn+1 = vn −
P ′(D|T , vn)
P ′′(D|T , vn)

(10)

The approximation algorithm iterates until the change in v between
two iterations falls below some user specified threshold, that is, un-
til the optimization converges. Usually, this procedure is repeated for
every branch in the tree.

BLO is central in the placement algorithm described in Section 3.1.2.
There, the smallest possible sub-tree, containing three tips, is sub-
jected to BLO to obtain more accurate likelihood values.

2.5 phylogenetic placement

While phylogenetic ML methods are useful to infer trees, one can also
use them for related problems. One such related problem is phyloge-
netic placement, which is the central topic of this work.

The goal of placement is to gain information about how a sequence
relates to an already existing tree and associated MSA. As such, place-
ment requires two inputs: a set of sequences, or query sequences, and
a reference tree, including the MSA from which the tree was built. The
reference tree forms the context into which the query sequences are
placed. Therefore, the query sequences must also be aligned to the
reference MSA. Calculating this extended MSA, comprising the refer-
ence and query sequences, is typically done prior to the phylogenetic
placement procedure.

Phylogenetic placement is an emerging tool in metagenetics [21, 24],
a field which studies genetic material that is obtained directly from
environmental samples. One of the opportunities of sampling directly
from the environment is the possibility to study inter-microbial inter-
actions. In contrast, classical biological studies of microbes cultivate
organisms in the lab, in isolation from their environment. Addition-
ally, many organisms cannot yet be cultivated in the lab to begin with.

14 basic principles

Thus, being able to study genetic sequences obtained directly from
their environments presents a plethora of opportunities for new in-
sights. For example, one may use placement algorithms to establish
bacterial abundance and diversity profiles [19, 30, 26, 20]. A recent
clinical study by Srinivasan et al. [30] utilized such analyses to iden-
tify correlations between composition of the microbial environment
in the human vagina and diagnosis of bacterial vaginosis.

Choosing an appropriate reference tree, and associated MSA, is a
daunting task in itself. Phylogenetic placement can only tell us where
on a tree a sequence most likely fits to. It cannot tell us if that same
sequence would have been much more likely placed at a different
location in the real, true evolutionary tree as it exists in nature. Thus,
the user has to consider the selection of organisms from which to
build the reference tree carefully to avoid potential biases.

For example, consider a recent study using placement methods to
detect Protist biodiversity in rain forest soils by Mahe et al. [19]. It
revealed significant populations of marine organisms among its sam-
ples. A more naïve approach may not have included such organisms
in the reference tree, potentially missing a significant component in
the composition of rain forest environments.

Ideally, placement should always rely on the most comprehensive
tree available. As ML tree inference is NP-Hard [9, 3], one needs to
make a trade off between the completeness of the tree and the feasi-
bility of inferring it.

The core placement algorithm itself does not choose or infer the
reference tree. Its main operation is to take each query sequence and
place it onto the tree as a new branch. Then, the overall likelihood of
the tree can be re-evaluated. A given edge in the tree, onto which the
algorithm has placed a sequence, is called the insertion branch. After
placing the sequence, the likelihood of the tree is regarded as the
likelihood of the sequence to be correctly placed on the specific edge.
The algorithm will repeat this for all pairs of query sequences and
tree edges.

It is important to note that placement does not extend the tree per-
manently: after evaluation of the likelihood of a placement, the refer-
ence tree is reset to its original configuration. In other words, we only
place one query sequence into the tree at a time.

The result of the placement algorithm is a mapping of sequences to
their most likely positions on the tree. We can quantify the differences
in placement likelihoods for a single query q = {p1, ...,pn}, where pi
is a placement of the sequence associated with q on branch i out of n
branches. We can do this by normalizing their likelihoods P(D|T ,p):

LWR(p) =
P(D|T ,p)∑n

i=1 P(D|T ,pi)
(11)

2.5 phylogenetic placement 15

This is called the likelihood weight ratio [35], and it represents the
confidence that the placement p of a query sequence is correct. Us-
ing the Likelihood Weight Ratio (LWR), the result of the placement
algorithm is a probability distribution for a query over the reference
tree, a concept that is useful in downstream analyses, as explained in
Section 2.6.

In this thesis, and in previous works implementing the phyloge-
netic placement procedure, the placement results are written to a
dedicated, standard file format called jplace.

2.5.1 jplace File Format

The jplace file format [23] is a portable, human-readable format for
storing phylogenetic placements of labeled query sequences on a ref-
erence tree. The format itself builds on the widely used JavaScript
Object Notation (JSON), allowing for seamless parsing on most plat-
forms.

The first basic element the jplace-file contains is the reference tree,
encoded in the Newick file format [10]. The jplace-format augments
this tree representation by a unique indexing of the branches, indi-
cated with brackets after branch lengths or edge labels. By convention,
the indexing follows a post-order traversal of the tree. For rooted trees
(Section 2.2) the post order traversal starts at the root. For unrooted
trees, the traversal depends on the choice of an inner node, that serves
as the root point (also called top level trifurcation).

This numbering is required for the second major block in the file:
the list of query sequences, and their calculated placements on the
tree. The sequences themselves are uniquely identified by their se-
quence labels, as they occurred in the query MSA (Section 2.5). The
format specifies that a list of placements follows this identifier, each
placement containing a collection of fields specifying the index of the
placement branch, its likelihood, and the LWR. The content of a place-
ment field is extensible. In the software presented here, for example,
each entry also contains the relative position along the branch of the
reference tree. This relative position is called the distal length, its asso-
ciated branch being the distal branch. The branch that was produced
during placement, connecting the tip containing the query sequence
to the tree, is called the pendant branch. Its length, called the pendant
length, is included as well. This pendant/distal branch length termi-
nology is also illustrated in Figure 7.

The pendant length is especially useful as an indication of the qual-
ity of the fit of a sequence on the tree. Consider, for example, that
the most likely placement is located on an unusually long pendant
branch. This could indicate that the organism represented by the
query sequence may not be closely related to any of the organisms
included in the reference tree. The presence of such placements can

16 basic principles

Rd Rp toward root⇒

P

distal
branch

proximal
branch

pendant
branch

Figure 7: Basic terminology of tree extension on a given edge of the reference tree.
Shown here is the edge of the reference tree, flanked on each end
by reference tree nodes Rd and Rd. Rp is the node that is closer
to the root of the reference tree and is called the proximal node.
Thus, Rd is the node of the two that is more distant from the root
of the reference tree, and is called the distal node. P is the node
that phylogenetic placement has temporarily attached to the refer-
ence tree, representing the query sequence. It is called the pendant
node. The central node was also temporarily added by the phylo-
genetic placement procedure. The branches connecting the central
node to the rest of the tree are called the proximal, distal, and
pendant branches, depending on their location. Their values are
named by the same scheme: proximal, distal, and pendant length.
The dashed lines depict the remaining branches in the reference
tree.

be a strong indication that the user may need to consider extending
the reference tree.

Lastly, the file also contains some fields for meta data. These may
include the format version, and the aforementioned types of data
recorded for each placement. Further meta data includes the com-
mand line invocation string of the placement program, which is use-
ful for reproducibility.

2.6 metrics on collections of placements

After obtaining the likelihoods and LWRs of each placement for a
query sequence on the reference tree, one can project the obtained
information back onto the tree to visualize how the sequence relates
to the tree. The LWR (Equation 11) is useful for this, since it is already
normalized and directly reflects the confidence into the placement.
Note that, the LWRs of a single query sum to one, thus yielding a
probability distribution over the tree.

When comparing the set of placements of two sequences, repre-
senting them as probability distributions is useful, as it allows us to
define a distance between them in terms of distances between distri-
butions. One such metric is the Earth Mover’s Distance (EMD) [27].
The name derives from its central metaphor: the distribution is a mass
and moving it requires work. The distance between two distributions
is the minimum amount of work required to transform one distribu-
tion into the other.

2.7 distributed computing 17

For distributions on phylogenetic trees, Evans and Matsen have
previously introduced the K-R distance [6]. It operates by the same
basic principle as the EMD, moving units of mass (LWRs) across the
phylogenetic tree, calculating the total amount of work required to
match two distributions.

In this work, I apply the K-R distance to evaluate the correctness of
my implementation. I do this by performing phylogenetic placement
of a shared set of query sequences on identical trees using different
implementations of phylogenetic placement, as well as my own. Then,
I compare the distributions of placement locations of query sequences
between the different programs I tested (See Section 6.1).

2.7 distributed computing

Scientific software typically pushes the limits of the computer system
it operates on. Taking phylogenetics as an example, common appli-
cations of algorithms such as tree inference require large amounts of
computing power and memory [31]. To address this need, scientific
institutions often have their own computing centers that house a mul-
titude of servers, usually connected via high performance network
systems. Such systems are called computational clusters, or are also
often referred to as a supercomputer due to their aggregated power.

Each independent computer in such a networked system is called a
computational node. A common approach to calculating large problems
is to split them up and distribute the computation to as many such
nodes as possible.

3
A L G O R I T H M S

The following chapter describes the operation of the EPA as it was
originally conceived by Berger et al. [2]. One of the main goals of this
work was to re-implement the EPA.

The core of the EPA is the part that evaluates the likelihood of place-
ments. Additionally, it can be augmented through the use of heuris-
tic approaches to pre-filter promising placement branches in order to
limit the computational work while not substantially decreasing accu-
racy. In the following chapter I will describe both, the core placement
algorithm, as well as its heuristic extensions.

3.1 placement

The placement algorithm can be divided into three phases.

1. Preprocessing

2. Query Placement

3. Result Aggregation

The following sections describe these phases in detail.

3.1.1 Preprocessing

During the first phase, the unrooted reference tree, as well as the
corresponding reference MSA, are read into memory, and an internal
tree structure is built.

The placement itself requires the CLVs at either end of the in-
sertion branch (Section 2.5) to be computed. These could be recom-
puted using the FPA (Section 2.3.2), via a full tree traversal, for every
placement. However, the CLVs of the edges of the reference tree do
not change throughout the placement procedure, across an arbitrary
number of queries. Thus, we compute the CLVs of every branch. For
each branch we assume that the virtual root of the unrooted tree is
located somewhere on that branch, and store the CLVs in memory.

This has the additional advantage of producing the basis for fine-
grained parallelization of the query placement phase. To place a query
sequence on a branch of the tree, one only needs the two CLVs be-
longing to that branch. This allows for high memory scalability of the
algorithm, subsets of the tree can be distributed independently to an
arbitrary number of compute nodes.

19

20 algorithms

(a)

1

2

4

3

5

6

(b)

3

4

1

5

6

2

Figure 8: Illustration of CLV precomputation. The goal of CLV precomputa-
tions is to compute every possible CLV (Section 2.3.2) of the given
reference tree. Depicted here are two iterations of said process for
the same four taxon phylogeny. First iteration (a)): the branch in-
dicated by the arrow is selected as the first branch of the CLV
precomputation procedure. The virtual root of the unrooted tree
(Section 2.2) is assumed to be located somewhere on the branch.
A post order traversal of the tree, starting at the virtual root, is
conducted to identify those CLVs that have not already been com-
puted. Such CLVs are indicated here as numbered diamonds. In
this case, we identify the need to compute CLVs 1 and 2, as they
are adjacent to the virtual root, 3 and 4 as they are required to
compute 2, and 5 and 6 as they, in turn, are required to compute
4. Next, the Felsenstein Pruning Algorithm (FPA) (Section 2.3.2)
is applied to compute the indicated CLVs. In the subsequent iter-
ation (b)), the process is repeated. Now, however, only one CLV,
indicated as number 2 needs to be directly computed, as the previ-
ous iteration has computed all other required CLVs (indicated by
squares). The procedure terminates when all branches have been
the subject of an iteration.

3.1 placement 21

Figure 8 illustrates these CLV precomputations. For a given edge
in the tree, the virtual root is assumed to be located somewhere on
that edge. A full traversal of the tree is conducted only once to cal-
culate any CLVs toward that specific virtual root, that have not yet
been computed. This is done through the use of the FPA. Any newly
calculated CLV is stored in memory.

Note that, each internal node of the tree will be associated with
three independent CLVs, one for every adjacent edge and direction
of the virtual root. This process is repeated for every edge in the tree.
Consequently, every possible CLV in the tree is computed.

3.1.2 Query Placement

With precomputed CLVs, the likelihood computation of the place-
ment of a sequence on the tree can be seen as being highly local. All
that is needed to compute the likelihood of a placement of a query
on a given edge are its two adjacent CLVs.

In the following, I will describe the full operation of the query
placement phase. An example of this is illustrated in Figure 9.

Let Rp and Rd denote the nodes of the reference tree directly adja-
cent to an edge e, on which a placement of a query sequence q ∈ Q
is evaluated using ML. Further, let lo denote the original length of e
in the reference tree.

The algorithm begins by placing a new inner node C between Rp
and Rd, splitting edge e, and its branch length lo in half. It assigns
the new branch lengths of the edges connecting C to Rp and C to Rd
to be lo × 0.5. Additionally, it places a new tip node P adjacent to C,
representing the sequence q. The length of the branch connecting C to
P is initially set to a default value. The result of this is an independent,
unrooted tree of minimal dimensions, containing three CLVs and one
inner node.

Next, the algorithm performs Branch Length Optimization (BLO)
(Section 2.4) on this minimal tree. This represents a first sacrifice of
accuracy, as ideally the BLO should be computed on the entire refer-
ence tree, extended by the query sequence. However, as this would
impose significantly higher computational effort, the algorithm limits
itself to the three edges closest to the inserted sequence q.

After the BLO converges, the algorithm computes the likelihood of
the placement. It does so by first choosing an arbitrary edge r from
the three edges of the minimal tree. It assumes that the virtual root
of the tree is located on r and then performs the overall likelihood
computation as described in Section 2.3.

It is worth noting that choosing the edge arbitrarily only works
under a time reversible model of nucleotide evolution.

22 algorithms

Rd

Rp

a) b)

c)d)

⇒

⇐

⇓ BLO
Rd

Rp

0.5 P

AACGTA

0.25

0.25

0.9
(default)

Rd

Rp

P

AACGTA

0.145

0.22

0.177

P(D|T ,p) =
4001.25

Figure 9: Basic placement of a query sequence by extension of the tree at a given
edge. a) the reference tree edge for which we want to evaluate the
likelihood of a placement for a given query sequence. The end
points of the edge correspond to nodes in the reference tree, de-
noted by Rp for the proximal, and Rd for the distal node. In this
example the original branch length is 0.5, as denoted by the edge
label. b) the placement algorithm attaches a new node P to the
edge representing the query sequence, here exemplary as the se-
quence AACGTA. It assigns the branch length adjacent to the new
node as a default value, here 0.9, and the two new branch lengths
adjacent to the original nodes Rp and Rd to be half the original
branch length. c) the placement algorithm performs a local branch
length optimization, confined to the edges shown. d) the algorithm
produces a likelihood based on the new branch lengths, assuming
the virtual root to be placed on one of the three edges. This is the
placement likelihood result of the sequence on the given branch of
the tree.

3.1 placement 23

Sequence Edge P(D|T ,p) LWR

AACGTA 0 24 0.01

1 235 0.14

2 456 0.26

3 344 0.20

4 677 0.39

a) compute

Sequence Edge P(D|T ,) LWR

AACGTA 2 456 0.4

4 677 0.6

c) recompute

b) filter

Figure 10: Post processing of placements during the filtering phase. The figure
shows is the tabulated result of a full query of a sequence AACGTA

on a phylogeny with 5 edges. P(D|T ,p) denotes the likelihood of
a single placement of the sequence at a given edge. During the
aggregation phase, all placements of a query are used to compute
their respective LWRs (Section 2.5, Equation 11) (a)). The query is
then filtered based on the LWR of the placements. In this example,
all placements with a LWR value below 0.25 are discarded (b)).
Lastly, the LWRs are recomputed based on the reduced set of
placements.

3.1.3 Result Filtering

During the last phase, the algorithm tabulates the likelihood results
of a sequence placed on every edge of the tree. It then calculates their
respective LWRs, as described in Section 2.5. The process is depicted
in Figure 10.

Optionally, the user can specify a threshold and a method to de-
termine what placements are discarded at this point. This is espe-
cially useful to minimize the data volume the program produces, as
it would otherwise output one placement for every edge in the tree,
for every query sequence.

The user can choose between two methods. In the first, all place-
ments that fall below a specified LWR are discarded. In effect, this al-
lows the user to specify what the minimum support value of a place-
ment should be. The second method sorts the placements by LWR,
then iteratively adds placements to the list of those that are retained,
until the cumulative LWR of that set exceeds a user specified value.

After this selection process, the algorithm outputs the placements
to a jplace file (Section 2.5.1).

24 algorithms

3.2 prescoring heuristic

While it may not be immediately obvious, the majority of the compu-
tational effort of the EPA (85–90% according to valgrind-callgrind) is
exerted during local BLO (Section 3.1.2). It involves a varying num-
ber of iterations on branch lengths, and more importantly, recompu-
tations of the phylogenetic likelihood.

Berger et al. originally outlined the prescoring heuristic [2], which
tries to economize in BLO invocations. It interjects during the nor-
mal operation of the algorithm, specifically during query placement.
While normal placement performs BLO during placement of every
sequence of every edge, prescoring skips optimization and instead
computes the likelihood based on the minimal tree immediately after
the new tip P is inserted into the tree based on the appropriate place-
ment likelihoods. It subsequently chooses a drastically reduced set of
candidate edges for every query sequence, based on a user specified
threshold. For each selected candidate edge, the algorithm repeats the
query placement phase of the algorithm, however this time it does
perform the localized BLO.

To set the fraction of candidate edges for thorough BLO, the user
can choose from two methods analogous to the discarding of place-
ments described in Section 3.1.3. In the first method, the user speci-
fies a percentage of edges in the reference tree. The algorithm sorts
the prescored placements by their LWR and then discards all but the
most probable placements, as specified by this percentage. The sec-
ond method is similar, however the user specifies an accumulated
LWR threshold. The placements are again sorted by their LWRs as be-
fore. However, this time, edges belonging to placements are added to
the set of candidates until the accumulated LWR threshold has been
reached.

The second method, called adaptive prescoring is, to my knowledge,
a novel method. Consequently, it was not available in the previous
implementations of the EPA. It represents a more adaptive heuristic,
as it adjust itself to the likelihood weight distribution produced by
prescoring. Should prescoring already produce a very likely candi-
date edge for placement, only this edge and perhaps a very small
number of additional edges are in fact evaluated more thoroughly
with BLO. When prescoring produces a very flat distribution, prescor-
ing will not limit itself to a maximum number of candidate edges and
instead reevaluate most edges by their relative importance.

The correctness of the adaptive prescoring method is evaluated in
Section 6.1.

4
R E L AT E D W O R K

In this chapter I outline the differences of my work to other pro-
grams implementing phylogenetic placement. Currently, not many
implementations exist. The two most widely used by far are RAxMLs
implementation of the EPA, and pplacer. My implementation will
henceforth be referred to as Parallel-EPA (P-EPA) to avoid confu-
sion.

Software performing taxonomic classification, one of the main uses
of phylogenetic placement, is also often built using BLAST [1] or sim-
ilar methods. However, as BLAST does not find the most likely phy-
logenetic placement, I will not cover BLAST-based approaches here.

4.1 raxml-epa

Prior to this work, the EPA had only been implemented as a part
of RAxML [32], an efficient and highly parallel ML-based program
for phylogenetic tree inference. As stated before, the primary goal
of this work is to re-implement the EPA, in analogy to the RAxML
implementation. Consequently, the basic operations of my algorithm
differ only in few, key points from the original EPA [2].

As P-EPA, RAxML-EPA calculates a set of placements of a query
sequence on a given reference tree (Section 2.5). It does so by evaluat-
ing individual placements ML (Section 2.3). RAxML-EPA also utilizes
prescoring to identify a set of candidate edges for more thorough eval-
uation, as described in Section 3.2. However, while in RAxML-EPA
the user needs to supply a fixed percentage of candidate edges to be
selected during prescoring, P-EPA also offers the option to determine
the candidates based on a cumulative LWR (Equation 11) threshold.

RAxML-EPA also utilizes precomputation of the CLVs at either end
of the edges to be evaluated. This is the key factor allowing the place-
ment algorithm to scale linearly in space and time with the size of the
reference tree.

The parallelization scheme employed in RAxML-EPA is, again, sim-
ilar to the one used in this work. Both approaches split up the refer-
ence tree by edges, then evaluate the placement of each query se-
quence on the given edge subset. However, in contrast to P-EPA,
RAxML-EPA does not support parallelization using distributed mem-
ory systems, such as supercomputing clusters. For running the EPA
on such systems, the users of RAxML have to first split up the query
sequences into appropriate chunks and then input them into instances
of the program running on separate computing nodes.

25

26 related work

While such a method scales decently with the number of query
sequences, it does not with the size of the tree, since every node will
always have to compute the placements for every edge. This is in
contrast to P-EPA, which automatically scales with both tree size and
volume of query sequences (Chapter 5).

Improving the scalability was in fact one of the main goals of this
thesis, along with achieving higher maintainability and code quality
than RAxML-EPA.

P-EPA also generates the jplace file format as its output (Section 2.5.1).

4.2 pplacer

The pplacer software [22] is a phylogenetic placement tool with simi-
lar functionality to RAxML-EPA (Section 4.1). It also scores placement
locations by extending a reference tree by an additional tip. As a score,
pplacer offers ML scores, but also Bayesian posterior probabilities.

In pplacer, Matsen et al. employ what they call baseball heursitics.
Baseball heuristics are conceptually similar to the prescoring heuris-
tic presented in Section 3.2, as they also try to select a set of candidate
edges. On these, a more thorough placement is then conducted, uti-
lizing BLO.

Candidate edge selection in the baseball heuristic works as follows.
For a given sequence, placement likelihoods are computed for the
middle of every edge. The resulting list of per edge likelihoods is
then sorted from most likely, denoted as L, to least likely. The authors
call this the batting order. The procedure then goes through the list
in order, performing thorough placement using BLO. This continues
until a thoroughly evaluated placement yields a likelihood lower than
the initially highest likelihood L minus some user specified value D,
called the strike box. Once this point is reached, a strike is counted. The
evaluation terminates once a number of strikes, specified by the user,
has been reached.

How pplacer performs BLO is different than how P-EPA and RAxML-
EPA do it. pplacer does not use the N-R method. Instead, the attach-
ment location on the insertion branch is changed iteratively, without
changing the sum of the distal and proximal branch lengths. Each it-
eration also changes the length of the pendant branch. For optimizing
the pendant branch length, however, Brent’s method is used. This is
repeated until some likelihood threshold is reached.

Like P-EPA and RAxML-EPA, pplacer outputs the placements in
jplace format (Section 2.5.1).

Unlike other placement tools, pplacer is a comprehensive software
package, and also includes tools for further analysis and visualization
of the placement results.

Among others, this includes placeviz, which converts the output
of the placement algorithm into tree formats that can be viewed by

4.2 pplacer 27

common tree visualization tools. It visualizes the number of place-
ments per branch by proportionally altering the branch thickness. The
tool also visualizes placement uncertainty through a color gradient.

Another associated tool is placeutil, which can be used to ma-
nipulate jplace-files. This includes merging separate placement files,
checking for inconsistencies such as different reference trees, or split-
ting them apart based on regular expressions.

5
D E S I G N

One of the main goals of this work was to produce a more scalable
implementation of the EPA, both regarding the size of the input ref-
erence tree, as well as the number of query sequences.

In practice, scaling with the number of input query sequences using
programs such as RAxML-EPA[2] or pplacer [22] is done by first
splitting up the sequences into disjoint chunks of equal size. Then,
the user runs many instances of the program, each placing one such
chunk of sequences on the common reference tree, across a number
of distributed compute nodes.

This approach fails to scale with the size of the tree, as every com-
pute node retains the full tree in memory. As the size of the tree, or
the size of the reference alignment for that matter, grows, memory re-
quirements can quickly become the limiting factor. Large trees under
the old parallelization approach are prone become inefficient because
of swapping data between Random Access Memory (RAM) and the
hard disk.

Additionally, RAxML-EPA performs model parameter and branch
length optimization of the reference tree for every instance of the
program, when in theory this only needs to be done once.

In contrast, the distributed design presented here allows to evenly
distribute the reference tree among an arbitrary number of compute
nodes. This includes a separation of the preparation phase, that per-
forms reference tree optimization and precomputes the CLVs. This
allows P-EPA to perform this task only once.

Section 5.2 will introduce the design in detail. First, however, in
Section 5.1 I will outline the basic parallelization scheme by which
the distributed, as well as the local parallelization operate.

5.1 parallelization over edges

The basic parallelization approach employed for P-EPA is to split the
reference tree into equally sized subsets of edges. The main idea that
allows for this is the fact that, once the preprocessing step of the EPA
(Section 3.1.1) has computed the CLVs for every edge in the tree, the
edges themselves can be regarded as independent with respect to the
placement procedure. The finest granularity that can be achieved is
therefore to assign one edge of the reference tree to one thread in the
multi-threaded version of the implementation.

29

30 design

Thread 1 Thread 2

Thread 3

Figure 11: Example of a possible mapping of reference tree edges to compute
threads.

RAxML-EPA [32] (Section 4.1) uses the same parallelization scheme
in its implementation. The authors showed that the scheme is a good
fit, and even achieves super-linear speedups.

While parallelization of the placement phase of the EPA (Section 3.1.2)
is straight forward, the pre- and post processing phases are more chal-
lenging.

The approach described so far is implemented using the OpenMP [25]
programming interface. OpenMP allows the user to write shared mem-
ory multiprocessing code for C/C++ or Fortran programs. It allowed
the shared memory parallelization of the software presented here to
be achieved with minimal programming effort, while also achieving
speedups comparable to RAxML (see results in Section 6.3).

To cope with large numbers of query sequences, an automatic chunk-
ing approach is used. Query sequences are read into memory in fixed-
size chunks. Each chunk is then fully processed by the program be-
fore their result is written to the jplace output file.

This decoupling of input, processing, and output forms a simple
pipeline, allowing query sequences to be streamed into the placement
core. Treating the input as a stream has the added benefit of allowing
P-EPA to read partial outputs from the program producing the query
MSA, allowing for further time savings.

For distributed memory systems, P-EPA employs a parallelization
scheme that expands on the pipeline paradigm.

5.2 distributed pipeline

The basic implementation presented so far already parallelizes the
placement phase of the EPA efficiently on shared memory systems.
The use of automatic chunking enables it to scale almost arbitrarily
with the number of input query sequences and RAM requirements.
Parallelizing the placement algorithm over edges in the reference tree
allows for scalability proportional to the size of the reference tree.

5.2 distributed pipeline 31

Memory scaling, however, is quickly limited as the size of the struc-
tures needed to represent the reference tree exceed the size of the
memory in the shared memory system.

P-EPA introduces a parallelization scheme for distributed mem-
ory systems. In principle, the scheme mirrors that presented in Sec-
tion 5.1: The tree is split into independent subsets of edges and dis-
tributed to computational nodes. In the distributed memory system,
these nodes are compute nodes in a supercomputer or cluster (Sec-
tion 2.7). Each of these nodes performs placement of all query se-
quences for the current chunk of the query MSA on its subset of the
tree. I denote this collection of nodes that compute placements of
sequences on edge subsets a placement stage.

To facilitate the distribution of edge subsets, the preprocessing phase
of the EPA (Section 3.1.1) is performed ahead of the actual placement
procedure. The result of this separate run, two CLVs per edge in the
tree, is written to a file. This file can then be accessed by all assigned
nodes in the cluster in parallel.

As discussed in Section 3.1.3, the placement results for a given se-
quence are subject to LWR computations and filtering. Herein also
lies the biggest issue this scheme has to overcome, as at the end of
the placement computation the results are fragmented by edge, while
we want to aggregate them by sequence. Thus, the scheme assigns the
task of collecting the results of a given sequence to a distinct set of
nodes in the cluster called the aggregation stage.

After placement of a chunk of sequences on its subset of the tree,
each compute stage node forwards the placement results of a given
sequence to the aggregation stage node that is responsible for col-
lecting the results of that sequence. This communication scheme is
illustrated in Figure 12. It is important to note that while the aggre-
gation stage computes the LWRs of a query, and filters the result, the
placement stage can begin computing placements for the next chunk
of sequences.

This forms the basis of the distributed pipeline. Figure 13 illustrates
how the interplay of the stages forms the pipeline. Sequences enter
the pipeline in chunks from the left as they are read by the nodes
in the compute stage. The resulting placements are forwarded to the
correct nodes in the aggregation stage, which filter the results and
write them to the jplace output file.

When the prescoring heuristic (Section 3.2) is used, the design of
the pipeline becomes more involved, as shown in Figure 14. The
pipeline is extended to four stages: computing the placements on the
whole tree without BLO, aggregating the results and selecting the can-
didate edges, thorough placement on the candidate edges, and finally
aggregating, filtering, and outputting the placement results.

A key difference is that in the second round of placement com-
putations, the amount of computation is not guaranteed to be dis-

32 design

Sequence Edge P(D|T ,p)

AACGTA 0 24

1 235

TTCGTA 0 456

1 344

Sequence Edge P(D|T ,p)

AACGTA 2 321

3 278

TTCGTA 2 387

3 265

Sequence Edge P(D|T ,p)

AACGTA 0 24

1 235

2 321

3 278

Sequence Edge P(D|T ,p)

TTCGTA 0 456

1 344

2 387

3 256
AA
CG
TA

AACGTA

TTC
GTA

TTCGTA

Placement Stage Aggregation Stage

Figure 12: Communication between the placement-, and aggregation stages in the
pipeline. In this example, two nodes in the placement stage are
tasked with placing the sequences AACGTA and TTCGTA on their
respective subsets of edges. Subsequent to placement, they send
their results to the aggregation phase, here made up of two nodes.
Each aggregation node in this example is responsible for comput-
ing the LWRs of one of the two sequences. Thus, communication
between the stages constitutes a reduce operation.

MSA ...

n1

ni

...
na

nb

jplace

Compute
placements

filter
placements
and output

Figure 13: Pipepline without prescoring. n denote the nodes per stage, i be-
ing the number of nodes in the placement stage. a and b denote
different sequence subsets, for which aggregation nodes na and
nb collect placement results. MSA and jplace denote input and
output files.

5.2 distributed pipeline 33

MSA ...

n

n

...
n

n

...

n

n

...
n

n

jplace

Compute
placements

without BLO

Select
candidate

edges

Compute
placements
with BLO

filter
placements
and output

Figure 14: Pipepline with prescoring. Although in this depiction nodes are de-
noted simply by n and not explicitly numbered, typically each
node will occupy a distinct compute node in the cluster. Further,
the mapping of sequences to intermediate stages, as shown in
Figure 13, persists here as well.

tributed equally across the tree, as only a small subset of edges per
sequence will be evaluated. This complicates the otherwise straight-
forward mapping of edge subsets to placement stage nodes. Instead,
nodes are now assigned specific combinations of edges and sequences
for thorough placement. The assignment is done such that the work-
load is distributed equally among the nodes computing the thorough
placement. At the same time, the assignment tries to “pin” edge sub-
sets to compute nodes, such that frequent loading of the stored CLVs
can be avoided.

The inherent challenge in using pipeline parallelism is to find a
mapping of compute nodes to stages in the pipeline, such that the
overall throughput of the pipeline is maximized. We call a given map-
ping of (compute) nodes to stages a schedule, and a schedule that
maximizes the pipeline throughput as optimal. As we can expect the
time it takes to compute a chunk of data in a stage of the pipeline
to vary for different input data, a static schedule is not optimal. In
the following, I describe a dynamic algorithm that approximates an
optimal schedule by continuously measuring the throughput of each
stage and periodically adjusting the schedule accordingly.

5.2.1 A Scheduling Algorithm

LetN be the set of compute nodes, linked by an interconnect network,
available to the program. Let S be the set of stages in the pipeline. A
schedule is a mapping N→ S. Let s ∈ S be a stage in the pipeline and
xs be the number of nodes assigned to stage s in a given schedule.

There are three constraints that a schedule must fulfill.

1. compute nodes cannot be subdivided:

xs ∈N+ (12)

34 design

2. every stage must be assigned at least one node:

1 6 xs 6 |N| (13)

3. every node must be assigned to a stage:∑
s∈S

xs = |N| (14)

In the beginning, the pipeline starts with some initial schedule. To
dynamically measure the efficiency of the schedule, during operation,
each node records the average time t it takes to process a chunk of
input sequences. t is called the turnaround time. Periodically, these val-
ues are aggregated, and a stage-wide average of t can be computed,
here denoted as ts, with s ∈ S. From this, the difficulty of a stage can
be computed as the time of a stage s relative to the fastest stage e:

ds =
ts

mine∈S(te)
(15)

Based on this empirically determined ds, we want to find a new
schedule such that each stage s receives a number xs of nodes pro-
portional to its computational difficulty. This can be expressed as

xs = dsxe (16)

Having our choices of xs constrained to integers, approximating an
optimal schedule constitutes solving the following Integer Nonlinear
Programming (INLP) optimization problem:

minimize
∑
s∈S

(dsxe − xs)
2

subject to
∑
s∈S

xs = |N|

xs ∈N+,∀s ∈ S (17)

The objective function of the optimization problem is the sum of
the squared differences between the nodes in a stage compared to
their difficulty. By minimizing it, we assure a schedule that, assum-
ing past throughput of the pipeline stages predicts future throughput,
schedules the nodes in such a way that the future throughput is max-
imized.

The periodicity of this reschedule operation is flexible. A high fre-
quency of reevaluation may allow the pipeline to quickly adapt to
changing load. However, as rescheduling requires flushing the pipeline,
a high re-scheduling frequency negatively impacts the overall effi-
ciency of the pipeline.

5.2 distributed pipeline 35

One possible strategy is to perform the re-scheduling in an expo-
nential fashion: much more frequently in the beginning, in the hope
that the pipeline quickly converges on an optimal configuration. This
initial frequent re-scheduling is followed by longer and longer peri-
ods of uninterrupted operation during which the bulk of the work is
processed.

In future work I hope to evaluate these, and other, scheduling ap-
proaches. I do not believe allowing the user to specify a default sched-
ule is appropriate, as it would further complicate the use of the pro-
gram.

6
E VA L U AT I O N

The implementation of the algorithms and parallel design presented
in Chapter 3 and Section 5.1 was evaluated with respect to three
key properties: validity of the results, serial runtime, and parallel ef-
ficiency.

Unfortunately, due to time constraints, I was unable to complete
the implementation of the distributed pipeline, and its scheduling
algorithm, presented in Sections 5.2 and 5.2.1. As a premature perfor-
mance evaluation of the distributed approach would be meaningless,
I hope to conduct a thorough evaluation in future work.

All tests are based on a subset of the query sequences used in [19].
As this is a recent real-world dataset, based on modern sequencing
technologies, I assume it to be representative of the type of data that
will be the typical input for P-EPA. Further, as I compare P-EPA’s
output to RAxML-EPA and pplacer, both of which have undergone
validation through simulation study, I assume empirical data to be
sufficient.

The reference tree and alignment were used in full. Only a small
subset of the query sequences was used to accelerate the evaluation.
The sequences themselves remained unchanged.

A modified version of RAxML (v 8.2.4) was used in the tests. It was
modified to not use empirical base frequencies. RAxML estimates em-
pirical base frequencies using the entire MSA, including the reference
and query sequences. This was disabled as P-EPA is built using a
low-level interface of the Phylogenetic Likelihood Library (PLL) [11],
which so far supports computing empirical frequencies from the ref-
erence alignment only.

pplacer (v 1.1.alpha18) was built from source prior to conduct-
ing the tests. It did not have to be modified regarding empirical base
frequencies, as model parameters can be supplied directly to the pro-
gram. The supplied model parameters for the reference tree and MSA
were the ones produced by the RAxML-EPA runs. The base frequen-
cies were set to be equally distributed (set to 0.25 each) and the re-
maining model parameters were either the result of RAxML’s opti-
mization routine or its defaults, depending on the test.

6.1 verification

To verify the correctness of P-EPA, I compared its output to the out-
puts of pplacer [22] and RAxML-EPA [2]. Each program was run

37

38 evaluation

on the same reference tree, reference alignment, and 1000 query se-
quences, taken from [19].

Three different tests were conducted on the same dataset with 1000
query sequences. In the thorough test, all programs were run without
their respective heuristics, that is, they evaluated every edge using
BLO. As noted in Section 4.2, the BLO used in pplacer differs from
the type used in RAxML-EPA and P-EPA.

A description of the heuristics can be found in Section 3.2 and
Chapter 4. For pplacer, disabling the baseball heuristics was achieved
by setting the number of maximum strikes to 0 (--max-strikes 0).

In the heuristic test, both RAxML-EPA and P-EPA were invoked
with the -G option. This option allows the user to specify a percentage
fraction of the total number of edges that should be selected as candi-
dates during the initial placement run. The fraction was set to 0.02 to
ensure consistency across the tested programs. For pplacer, the base-
ball heuristic was used and configured such that it behaved identical
to RAxML-EPA’s -G 0.02 option. This was done by setting the strike
box to 0 and the maximum number of pitches to 20 (0.02× 1021, 1021
being the total number of branches in the reference tree).

Lastly, in the adaptive prescoring test, the adaptive prescoring method,
introduced in Section 3.2, was compared to the results of RAxML-EPA
and pplacer from the previous, heuristic, test. As mentioned, adap-
tive prescoring stops selecting edges from the sorted list of candidates
after an accumulated LWR threshold is reached. The threshold used
here was 0.95, meaning at least 95% of the sum total likelihood weight
of all placements is considered in the thorough re-evaluation. This is
also the default value when using adaptive prescoring in P-EPA.

Subsequently, the K-R metric (Section 2.6) was used to calculate a
pairwise distance between the placement results of two programs at
a time. To achieve this for a given sequence, the K-R distance was
calculated between the placements produced by program A and the
placements produced by program B. This was done for each of the
1000 query sequences. The overall distance between the output of A
and B was then calculated to be the mean between the distances for
individual query sequences. The genesis toolkit [4] was instrumental
in this procedure.

Figure 15 visualizes the result of the three tests. The three tested
programs are shown in the corners of the triangle. The distance be-
tween the corners is the pairwise K-R distance.

As the K-R metric is a distance between placement distributions
of a sequence, we can use it to establish a baseline between two pro-
grams that have already been determined to produce highly similar
results [2, 22]. This is done by calculating the distance between the
two programs, RAxML-EPA and pplacer. We can then calculate the
distances of the results of those programs to the results of P-EPA.

6.2 serial runtime 39

RAxML pplacer

P-EPA

0.1057

0.07
4 0.045a)

RAxML pplacer

P-EPA

0.107

0.07
8 0.048b)

RAxML pplacer

P-EPA

0.107

0.08
2 0.050c)

Figure 15: Average query K-R distances (Section 2.6) between outputs of tested im-
plementations. The corners of the triangles are labeled by the pro-
grams that produced the output. a) shows the mean query K-R
distances using the thorough, non-heuristic approach. b) shows
the mean query K-R distances using the heuristic approach. c) is
analogous to b), however the results of P-EPA used to compute
the mean K-R distances were obtained using the adaptive prescor-
ing heuristic (Section 3.2) with the default threshold value of 0.95.

Placing these distances in conjunction, as is done in Figure 15, we can
visualize how similar or dissimilar our results are to the baseline.

The results of these tests show, that my implementation produces
placements that are highly similar to those of pplacer and RAxML-
EPA.

6.2 serial runtime

The serial execution times of RAxML-EPA, P-EPA, and pplacer were
evaluated, using the same reference tree, reference sequences and
1000 query sequences as used in the correctness tests (Section 6.1 and
Figure 15). Figure 16 shows the results.

The configuration of the programs was identical to the correctness
tests for both the thorough and heuristic placement calculations.

The tests show that, while for thorough placement P-EPA achieves
an equivalent execution time as RAxML-EPA, further work is required

40 evaluation

0

400

800

1200

P-EPA RAxML-EPA pplacer

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Execution times of
Thorough Placement

(a)

0

50

100

150

P-EPA RAxML-EPA pplacer

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Execution times of
Heuristic Placement

(b)

Figure 16: Comparision of execution times of different phylogenetic placement soft-
ware. Shown are the lowest execution times out of 10 repetitions
for each program. The data used was the same as in the correct-
ness tests (Section 6.1 and Figure 15). (a) compares the execution
times for thorough placement of 1000 sequences. For pplacer,
this was achieved by setting the number of strikes to 0. (b) shows
the execution times of heuristic placement of the 1000 sequences.
The programs were configured such that the 20 most likely edges
for every sequence were evaluated in detail. For RAxML-EPA and
P-EPA, this was achieved by supplying the -G 0.02 option. This
fraction derives from the fact that the reference tree used has 1021
edges. For pplacer, the options -strike-box 0 -max-strikes

20 were used.

6.3 efficiency 41

0

10

20

30

40

50

0 10 20 30 40 50

Number of Threads

Sp
ee

du
p

P-EPA Speedup per Threads used

Figure 17: Speedup of the multi-thread implementation. Tests were conducted
on a machine with 4 AMD OpteronTM 6174 processors, each hav-
ing 12 physical cores. For each number of threads, 100 query se-
quences were placed on the reference tree from [19]. This was
repeated 10 times each. The result shows the lowest execution
time of those 10 runs.

to achieve the same for the heuristic placement mode. It also shows
that pplacer currently outperforms both implementations. After con-
ferring with the authors of pplacer, we believe this discrepancy to be
due to the different way it performs BLO. Closing this execution time
gap is the subject of future work.

6.3 efficiency

The efficiency of the multi-thread implementation (Section 5.1) was
tested on a machine with 4 AMD OpteronTM 6174 processors, with
12 physical cores per processor. The machine had 256GB of RAM.

The dataset used in this test was again extracted from the data in
[19]. For this test, however, only 100 query sequences were used at
a time to limit the overall duration. The 100 query sequences were
placed against the full reference tree consisting of 512 species, using
the standard (thorough) placement approach (Section 3.1). This was
repeated 10 times for every tested number of threads. Of those 10
runs, the shortest run time was taken as the data point, as slower run-
times on identical data are assumed to be due to outside influences.

42 evaluation

From a performance standpoint, we are primarily interested in the
best possible result, ignoring outside factors.

The results are shown in Figure 17, where the speedup compared
to the single-thread implementation is plotted for every run.

The tests show, that P-EPA performs efficiently for a low to inter-
mediate number of threads. A drop off in efficiency can be observed
for a high number of threads. Most likely this is due to inefficiencies
in distributing the work load using OpenMP, as the tested machine,
having four processors, uses non-uniform memory access (NUMA).

7
S U M M A RY

In this work, I presented P-EPA, a complete reimplementation of the
EPA. I showed that P-EPA has an overall efficiency that is similar to
that of previous implementations on shared memory systems. Addi-
tionally, I presented a design that will enable P-EPA to utilize compu-
tational resources in a distributed memory system. I also presented a
method for load balancing the stages of the pipeline by empirical mea-
surements and dynamic adaptations during execution. I presented
the first parallelization scheme that can potentially with the size of
the tree, potentially enabling phylogenetic placement on extremely
large reference trees with billions of query sequences.

Further, I showed the validity of P-EPA by comparing its output
to its main competitors: RAxML-EPA and pplacer. My tests showed
that my implementation produces placements that are highly similar
to those computed by RAxML-EPA and pplacer.

7.1 implementation notes

Unfortunately, due to time constraints, I was unable to complete the
implementation and testing of the distributed pipeline, as well as the
load balancing algorithm, presented in Sections 5.2 and 5.2.1.

P-EPA was developed using C++11. It uses a low-level interface of
the Phylogenetic Likelihood Library [11] for most of its phylogenetic
likelihood computations, and file input/output operations.

A short command line interface manual for P-EPA can be found in
Appendix A.1. The source code is available upon request, at https:
//github.com/Pbdas/epa.

7.2 future work

Section 6.2 showed several shortcomings of P-EPA in terms of exe-
cution time. One possible improvement would be the inclusion of
pplacer-inspired BLO. In general, more work in optimizing the core
computations of the placement algorithm is needed.

Further, the distributed design I introduced in Section 5.2 still needs
to be fully tested and refined. A part of further development in this re-
gard should be the evaluation and further refinement of the schedul-
ing procedure I presented alongside the distributed design in Sec-
tion 5.2.1.

Other future work may include extending the program to work
with a wider variety of input data, such as Amino Acid sequences.

43

https://github.com/Pbdas/epa
https://github.com/Pbdas/epa

44 summary

More supported input file formats would be beneficial, too. These
features may depend on their availability in the a low-level interface
of the PLL, which I use extensively in P-EPA.

A
A P P E N D I X

a.1 p-epa command line interface manual

-h Display list of options

-t Path to the reference tree file

-s Path to reference alignment file. May include query se-
quences.

-q Path to query alignment file

-w Path to working directory.

Default: current working directory

-g Use prescoring heuristic with specified value acting as an
accumulative LWR threshold beyond which no candidates
are selected

Default: off. When used but no value specified the default
is 0.95

-G Use prescoring heuristic with specified value acting as the
fraction of edges in the reference tree which should be se-
lected as candidate edges

Default: off. When used but no value specified: 0.1

-O Optimize branch lengths and model parameters of the ref-
erence tree

-l Filter final result by minimum LWR value below which
placements are discarded

Default: 0.01

-L Filter final result by accumulative LWR value. When spec-
ified threshold is reached all other placements are dis-
carded

Default: off

-m Specify nucleotide substitution model

Options:

GTR General Time Reversible (Default)

JC69 Jukes-Cantor

K80 Kimura 80

-b Path to binary file produced by first running the program
with the -B option. Performs placement on tree and align-
ment specified in said file

45

46 appendix

-B Binary dump mode: only builds the relevant internal struc-
tures, performs optimization (if -O was specified) and cal-
culates all possible CLVs. Then dumps it all in a compact
file format that can be read by the program using the -b
option. Does not perform placement!

B I B L I O G R A P H Y

[1] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. My-
ers, and David J. Lipman. Basic local alignment search tool. Jour-
nal of Molecular Biology, 215(3):403 – 410, 1990.

[2] Simon A. Berger, Denis Krompass, and Alexandros Stamatakis.
Performance, accuracy, and web server for evolutionary place-
ment of short sequence reads under maximum likelihood. Sys-
tematic Biology, 60(3):291–302, 2011. doi: 10.1093/sysbio/syr010.

[3] Benny Chor and Tamir Tuller. Finding a Maximum Likelihood
Tree is Hard. Journal of the Association for Computing Machinery,
53(5):722–744, September 2006. doi: 10.1145/1183907.1183909.

[4] Lucas Czech. genesis – A toolkit for working with phylogenetic
data. Web page, accessed May 2016. URL https://github.com/

lczech/genesis.

[5] Charles Darwin. On the Origin of Species by Means of Natural
Selection. Murray, London, 1859. or the Preservation of Favored
Races in the Struggle for Life.

[6] Steven N. Evans and Frederick A. Matsen. The phylogenetic
Kantorovich-Rubinstein metric for environmental sequence sam-
ples. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 74(3):569–592, 2012.

[7] Joseph Felsenstein. Evolutionary trees from DNA sequences: A
maximum likelihood approach. Journal of Molecular Evolution, 17

(6):368–376, 1981. doi: 10.1007/BF01734359.

[8] Joseph Felsenstein. Statistical Inference of Phylogenies. Journal
of the Royal Statistical Society. Series A (General), 146(3):246–272,
1983.

[9] Joseph Felsenstein. Inferring Phylogenies, volume 2. Sinauer As-
sociates Inc., 2004.

[10] Joseph Felsenstein. The Newick file format. Web page, accessed
May 2016. URL http://evolution.genetics.washington.edu/

phylip/newicktree.html.

[11] T. Flouri, F. Izquierdo-Carrasco, D. Darriba, A.J. Aberer, L.-T.
Nguyen, B.Q. Minh, A. von Haeseler, and A. Stamatakis. The
Phylogenetic Likelihood Library. Systematic Biology, 2014. doi:
10.1093/sysbio/syu084.

47

https://github.com/lczech/genesis
https://github.com/lczech/genesis
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html

48 bibliography

[12] Centers for Disease Control. Outbreak of West Nile-Like Viral
Encephalitis. Web page, accessed May 2016. URL https://www.

cdc.gov/mmwr/preview/mmwrhtml/mm4838a1.htm.

[13] Bernard Friedenson. The BRCA1/2 pathway prevents hemato-
logic cancers in addition to breast and ovarian cancers. BioMed
Central Cancer, 7(1):1, 2007.

[14] Pablo A. Goloboff, Santiago A. Catalano, J. Marcos Mirande,
Claudia A. Szumik, J. Salvador Arias, Mari Källersjö, and
James S. Farris. Phylogenetic analysis of 73 060 taxa corrob-
orates major eukaryotic groups. Cladistics, 25(3):211–230, 2009.
doi: 10.1111/j.1096-0031.2009.00255.x.

[15] Daniel H. Huson, Alexander F. Auch, Ji Qi, and Stephan C.
Schuster. MEGAN analysis of metagenomic data. Genome Re-
search, 17(3):377–386, 2007. doi: 10.1101/gr.5969107.

[16] Xi-Yu Jia, Thomas Briese, Ingo Jordan, Andrew Rambaut,
Han Chang Chi, John S Mackenzie, Roy A Hall, Jacqui Scher-
ret, and W Ian Lipkin. Genetic analysis of West Nile New York
1999 encephalitis virus. The Lancet, 354(9194):1971 – 1972, 1999.

[17] Thomas H Jukes and Charles R Cantor. Evolution of Protein
Molecules. Mammalian Protein Metabolism, 3(21):132, 1969.

[18] Samuli Lehtonen. Towards Resolving the Complete Fern Tree of
Life. PLoS ONE, 6(10):1–6, 10 2011. doi: 10.1371/journal.pone.
0024851.

[19] Frederic Mahe, Colomban de Vargas, David Bass, Lucas Czech,
Alexandros Stamatakis, Enrique Lara, Jordan Mayor, John
Bunge, Sarah Sernaker, Tobias Siemensmeyer, Isabelle Traut-
mann, Sarah Romac, Cedric Berney, Alexey Kozlov, Edward
Mitchell, Christophe Seppey, David Singer, Elianne Egge, Rainer
Wirth, Gabriel Trueba, and Micah Dunthorn. Soil Protists in
Three Neotropical Rainforests are Hyperdiverse and Dominated
by Parasites. bioRxiv, 2016. doi: 10.1101/050997.

[20] C Manichanh, L Rigottier-Gois, E Bonnaud, K Gloux, E Pelletier,
L Frangeul, R Nalin, C Jarrin, P Chardon, P Marteau, J Roca, and
J Dore. Reduced diversity of faecal microbiota in Crohn’s disease
revealed by a metagenomic approach. Gut, 55(2):205–211, 2006.
doi: 10.1136/gut.2005.073817.

[21] Frederick A. Matsen. Phylogenetics and the Human Micro-
biome. Systematic Biology, 64(1):e26–e41, 2015. doi: 10.1093/
sysbio/syu053.

https://www.cdc.gov/mmwr/preview/mmwrhtml/mm4838a1.htm
https://www.cdc.gov/mmwr/preview/mmwrhtml/mm4838a1.htm

bibliography 49

[22] Frederick A. Matsen, Robin B. Kodner, and Virginia E. Armbrust.
pplacer: linear time maximum-likelihood and Bayesian phyloge-
netic placement of sequences onto a fixed reference tree. BioMed
Central Bioinformatics, 11(1):1–16, 2010.

[23] Frederick a. Matsen, Noah G. Hoffman, Aaron Gallagher, and
Alexandros Stamatakis. A format for Phylogenetic Placements.
PLoS ONE, 7(2):1–5, 2012. doi: 10.1371/journal.pone.0031009.

[24] Jenna L. Morgan, Aaron E. Darling, and Jonathan A. Eisen.
Metagenomic Sequencing of an In Vitro-Simulated Microbial
Community. PLoS ONE, 5(4):1–10, 04 2010. doi: 10.1371/journal.
pone.0010209.

[25] OpenMP Architecture Review Board. OpenMP Application Pro-
gram Interface Version 3.0, May 2008. URL http://www.openmp.

org/mp-documents/spec30.pdf.

[26] Junjie Qin, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam,
Kristoffer Solvsten Burgdorf, Chaysavanh Manichanh, Trine
Nielsen, Nicolas Pons, Florence Levenez, Takuji Yamada, et al.
A human gut microbial gene catalogue established by metage-
nomic sequencing. Nature, 464(7285):59–65, 2010.

[27] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth
Mover’s Distance as a Metric for Image Retrieval. International
Journal of Computer Vision, 40:99–121, 2000.

[28] F. Sanger and A.R. Coulson. A rapid method for determining
sequences in DNA by primed synthesis with DNA polymerase.
Journal of Molecular Biology, 94(3):441 – 448, 1975.

[29] Stephen A. Smith, Jeremy M. Beaulieu, Alexandros Stamatakis,
and Michael J. Donoghue. Understanding angiosperm diversifi-
cation using small and large phylogenetic trees. American Journal
of Botany, 98(3):404–414, 2011. doi: 10.3732/ajb.1000481.

[30] Sujatha Srinivasan, Noah G. Hoffman, Martin T. Morgan, Freder-
ick A. Matsen, Tina L. Fiedler, Robert W. Hall, Frederick J. Ross,
Connor O. McCoy, Roger Bumgarner, Jeanne M. Marrazzo, and
David N. Fredricks. Bacterial Communities in Women with Bac-
terial Vaginosis: High Resolution Phylogenetic Analyses Reveal
Relationships of Microbiota to Clinical Criteria. PLoS ONE, 7(6):
1–15, 06 2012. doi: 10.1371/journal.pone.0037818.

[31] Alexandros Stamatakis. Parallel and Distributed Computation of
Large Phylogenetic Trees, pages 325–346. John Wiley & Sons, Inc.,
2005.

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf

50 bibliography

[32] Alexandros Stamatakis. RAxML version 8: a tool for phyloge-
netic analysis and post-analysis of large phylogenies. Bioinfor-
matics, 30:1312–1313, 2014.

[33] S. Tavaré. American Mathematical Society: Lectures on Mathematics
in the Life Sciences, volume 17, chapter Some Probabilistic and
Statistical Problems in the Analysis of DNA Sequences, pages
57–86. Amer Mathematical Society, 1986.

[34] J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W.
Li, Richard J. Mural, Granger G. Sutton, Hamilton O. Smith,
Mark Yandell, Cheryl A. Evans, Robert A. Holt, Jeannine D. Go-
cayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson,
Jennifer Russo Wortman, Qing Zhang, Chinnappa D. Kodira, Xi-
angqun H. Zheng, Lin Chen, Marian Skupski, Gangadharan Sub-
ramanian, Paul D. Thomas, Jinghui Zhang, George L. Gabor Mik-
los, Catherine Nelson, Samuel Broder, Andrew G. Clark, Joe
Nadeau, Victor A. McKusick, Norton Zinder, Arnold J. Levine,
Richard J. Roberts, Mel Simon, Carolyn Slayman, Michael
Hunkapiller, Randall Bolanos, Arthur Delcher, Ian Dew, Daniel
Fasulo, Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar
Hannenhalli, Saul Kravitz, Samuel Levy, Clark Mobarry, Knut
Reinert, Karin Remington, Jane Abu-Threideh, Ellen Beasley,
Kendra Biddick, Vivien Bonazzi, Rhonda Brandon, Michele
Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir
Chaturvedi, Zuoming Deng, Valentina Di Francesco, Patrick
Dunn, Karen Eilbeck, Carlos Evangelista, Andrei E. Gabrielian,
Weiniu Gan, Wangmao Ge, Fangcheng Gong, Zhiping Gu, Ping
Guan, Thomas J. Heiman, Maureen E. Higgins, Rui-Ru Ji, Zhaoxi
Ke, Karen A. Ketchum, Zhongwu Lai, Yiding Lei, Zhenya Li, Ji-
ayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov,
Natalia Milshina, Helen M. Moore, Ashwinikumar K Naik,
Vaibhav A. Narayan, Beena Neelam, Deborah Nusskern, Dou-
glas B. Rusch, Steven Salzberg, Wei Shao, Bixiong Shue, Jing-
tao Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang, Jian Wang,
Ming-Hui Wei, Ron Wides, Chunlin Xiao, Chunhua Yan, Ali-
son Yao, Jane Ye, Ming Zhan, Weiqing Zhang, Hongyu Zhang,
Qi Zhao, Liansheng Zheng, Fei Zhong, Wenyan Zhong, Shiaop-
ing C. Zhu, Shaying Zhao, Dennis Gilbert, Suzanna Baumhueter,
Gene Spier, Christine Carter, Anibal Cravchik, Trevor Woodage,
Feroze Ali, Huijin An, Aderonke Awe, Danita Baldwin, Holly
Baden, Mary Barnstead, Ian Barrow, Karen Beeson, Dana Busam,
Amy Carver, Angela Center, Ming Lai Cheng, Liz Curry, Steve
Danaher, Lionel Davenport, Raymond Desilets, Susanne Dietz,
Kristina Dodson, Lisa Doup, Steven Ferriera, Neha Garg, An-
dres Gluecksmann, Brit Hart, Jason Haynes, Charles Haynes,
Cheryl Heiner, Suzanne Hladun, Damon Hostin, Jarrett Houck,

bibliography 51

Timothy Howland, Chinyere Ibegwam, Jeffery Johnson, Fran-
cis Kalush, Lesley Kline, Shashi Koduru, Amy Love, Felecia
Mann, David May, Steven McCawley, Tina McIntosh, Ivy Mc-
Mullen, Mee Moy, Linda Moy, Brian Murphy, Keith Nelson, Cyn-
thia Pfannkoch, Eric Pratts, Vinita Puri, Hina Qureshi, Matthew
Reardon, Robert Rodriguez, Yu-Hui Rogers, Deanna Romblad,
Bob Ruhfel, Richard Scott, Cynthia Sitter, Michelle Smallwood,
Erin Stewart, Renee Strong, Ellen Suh, Reginald Thomas, Ni Ni
Tint, Sukyee Tse, Claire Vech, Gary Wang, Jeremy Wetter, Sherita
Williams, Monica Williams, Sandra Windsor, Emily Winn-Deen,
Keriellen Wolfe, Jayshree Zaveri, Karena Zaveri, Josep F. Abril,
Roderic Guigó, Michael J. Campbell, Kimmen V. Sjolander, Brian
Karlak, Anish Kejariwal, Huaiyu Mi, Betty Lazareva, Thomas
Hatton, Apurva Narechania, Karen Diemer, Anushya Muru-
ganujan, Nan Guo, Shinji Sato, Vineet Bafna, Sorin Istrail, Ross
Lippert, Russell Schwartz, Brian Walenz, Shibu Yooseph, David
Allen, Anand Basu, James Baxendale, Louis Blick, Marcelo
Caminha, John Carnes-Stine, Parris Caulk, Yen-Hui Chiang,
My Coyne, Carl Dahlke, Anne Deslattes Mays, Maria Dom-
broski, Michael Donnelly, Dale Ely, Shiva Esparham, Carl Fos-
ler, Harold Gire, Stephen Glanowski, Kenneth Glasser, Anna
Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael
Harris, Jeremy Heil, Scott Henderson, Jeffrey Hoover, Donald
Jennings, Catherine Jordan, James Jordan, John Kasha, Leonid
Kagan, Cheryl Kraft, Alexander Levitsky, Mark Lewis, Xiangjun
Liu, John Lopez, Daniel Ma, William Majoros, Joe McDaniel,
Sean Murphy, Matthew Newman, Trung Nguyen, Ngoc Nguyen,
Marc Nodell, Sue Pan, Jim Peck, Marshall Peterson, William
Rowe, Robert Sanders, John Scott, Michael Simpson, Thomas
Smith, Arlan Sprague, Timothy Stockwell, Russell Turner, Eli
Venter, Mei Wang, Meiyuan Wen, David Wu, Mitchell Wu, Ash-
ley Xia, Ali Zandieh, and Xiaohong Zhu. The sequence of
the human genome. Science, 291(5507):1304–1351, 2001. doi:
10.1126/science.1058040.

[35] C. von Mering, P. Hugenholtz, J. Raes, S. G. Tringe, T. Doerks,
L. J. Jensen, N. Ward, and P. Bork. Quantitative Phylogenetic
Assessment of Microbial Communities in Diverse Environments.
Science, 315(5815):1126–1130, 2007. doi: 10.1126/science.1133420.

[36] KA Wetterstrand. DNA Sequencing Costs: Data from
the NHGRI Genome Sequencing Program (GSP). Web
page, accessed May 2016. URL https://www.genome.gov/

sequencingcostsdata.

https://www.genome.gov/sequencingcostsdata
https://www.genome.gov/sequencingcostsdata

D E C L A R AT I O N

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt,
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
zu haben, die wörtlich oder inhaltlich übernommenen Stellen als
solche kenntlich gemacht zu haben und die Satzung der Universität
Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis beachtet
zu haben.

Karlsruhe, May 2016

Pierre Barbera

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	1 Introduction
	2 Basic Principles
	2.1 Molecular Data
	2.2 Phylogenetic Trees
	2.3 Phylogenetic Likelihood
	2.3.1 Models of Nucleotide Evolution
	2.3.2 The Felsenstein Pruning Algorithm

	2.4 Tree Search and Parameter Optimization
	2.5 Phylogenetic Placement
	2.5.1 jplace File Format

	2.6 Metrics on collections of Placements
	2.7 Distributed Computing

	3 Algorithms
	3.1 Placement
	3.1.1 Preprocessing
	3.1.2 Query Placement
	3.1.3 Result Filtering

	3.2 Prescoring Heuristic

	4 Related Work
	4.1 RAxML-EPA
	4.2 pplacer

	5 Design
	5.1 Parallelization over Edges
	5.2 Distributed Pipeline
	5.2.1 A Scheduling Algorithm

	6 Evaluation
	6.1 Verification
	6.2 Serial Runtime
	6.3 Efficiency

	7 Summary
	7.1 Implementation Notes
	7.2 Future Work

	A Appendix
	A.1 P-EPA Command Line Interface Manual

	Bibliography
	Declaration

