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Background and Motivation

Metagenomic studies often need to biologically classify millions of reads. This assignment of reads to known reference
sequences helps to assess the composition and diversity of microbial communities and allows for comparing them.

Traditional methods for read classification, particularly approaches based on mere sequence similarity (e.g., BLAST),
however, have their limits [1]. If the sampling of the reference sequences is sparse or inappropriate, the reference might
not contain sequences that are sufficiently closely related to the reads. Many environmental sequencing studies hence
disregard reads that are less than 80% similar to those in reference databases.
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The figure shows the similarity of sequences to a reference database for (a) marine protists (from the Tara-Oceans project)
and (b) tropical soil protists. In (a), the majority of reads are sufficiently similar to the reference database. In (b), however,
many reads have less than 80% similarity to the reference database.

This might result in removing too many reads and hence biasing the diversity estimate or missing new species.

The Evolutionary Placement Algorithm offers a solution to this problem.

Evolutionary Placement Algorithm

Input Data
The Evolutionary Placement Algorithm (EPA) [2] takes as input:

e An alignment of reference sequences (e.g., single 16S or barcoding gene)
® A species tree (usually inferred from the reference sequences)
e Aligned query sequences (e.g., lllumina reads) [3]

TR TR TR T
i il 118 Reference sequences &
1 Reference tree

\ ; '

111
E !
, , F
Algorithm | F
The algorithm finds the most likely (via maximum likelihood) insertion position for every query sequence on the
reference tree. The resulting assignment of a query sequence to a branch is called a "placement".
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This can be done in parallel for each query and each branch and is thus highly scalable.

Advantages over BLAST
® Assigns environmental reads to an evolutionary history
(assignment to all branches, not only tips)
® Best BLAST hit is not necessarily the evolutionary closest sequence [1]
e Explicit model of rate heterogeneity
® Can reveal taxon sampling problems

The output of EPA is standardized using an easy-to-read JSON-based text format [4].




Applications

Compare placements from several samples

® Time series (How does an environment change over time?)
® Healthy versus sick patients  (What are the distinctive features of a disease?)
® Geographical positions (How do locations differ from each other?)

The figure shows two different distributions of placements on the same reference tree.
For comparing them, we need to quantify their difference:

e Earth Movers Distance
Calculates the minimal amount of "work" required to transform one sample/distribution into the other.

e Edge Principal Component Analysis [5]
Visualizes the weight differences of placements per branch (split) of the tree.
Count species in placements of a single sample

We look at the placements on each branch separately (a). Their relationship (multifurcation) is resolved using standard
maximume-likelihood. The resulting tree is then rooted and can be interpreted as a new sub-tree of the reference tree (b).
Given this sub-tree, we can delimit (putative) speC|es based on the placements [6].

Ql Putative Species A
Q3 Putative Species B
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This is useful for estimating the diversity of these species.

Visualization

For millions of query sequences, visualization of each
placement is not helpful. Instead, we summarize the
information by coloring the branches of the reference
tree according to the placement frequency.

This exemplary figure shows V4 OTU data of
Apicomplexa from rainforest soils collected in Costa
Rica, Panama, and Ecuador.

It is easy and straight forward to identify the

"interesting" regions of the tree, i.e., the dark regions 2,500
where many query sequences are placed. 1,000
100 @
[=
[}
€
0 8
-y
Y
o
-0 H*
[1] L. B. Koski and G. B. Golding, “The closest BLAST hit is often not the nearest neighbor.,” EPA is available via Standard RAXML, see github.com/
Mol. Evol., vol. 52, no. 6, pp. 540-2, Jun. 2001. stamatak/standard-RAxML
[2]S. Berger, D. Krompass, and A. Stamatakis, “Performance, accuracy, and web server for This work was financially supported by the Klaus

evolutionary placement of short sequence reads under maximum likelihood,” Syst. Biol., vol. Tschira Foundation. ) )
The original methods and implementations were

60, no. 3, pp. 291-302, 2011.
N . : " developed by S.A. Berger, D. KrompaB, J. Zhang,
[3]1S. Berger and A. Stamatakis, “Aligning short reads to reference alignments and trees, P. Kapli, P. Pavlidis and A. Stamatakis [2,3,6].

Bioinformatics, vol. 27, no. 15, pp. 2068-2075, 2011. . -
[4]1 F. A. Matsen, N. G. Hoffman, A. Gallagher, and A. Stamatakis, “A format for phylogenetic Zgghﬁgézaler(sﬂ?:g%y;ac;r; zﬁgtcgznaﬁzgggz\gémg the
placements,” PLoS One, vol. 7, no. 2, pp. 1-4, Jan. 2012.

[5] F. A. Matsen and S. N. Evans, “Edge principal components and squash clustering: using the
special structure of phylogenetic placement data for sample comparison.,” PLoS One, vol. 8, no.

3, pp. 1-17, Jan. 2011. Heidelberger Institut fiir
[6]). Zhang, P. Kapli, P. Pavlidis, and A. Stamatakis, “A general species delimitation method with Theoretische Studien
applications to phylogenetic placements,” Bioinformatics, vol. 29, no. 22, pp. 2869-2876, 2013. HITS

www.exelixis-lab.org

Karlsruher Institut fir Technologie




