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Abstract

One of the most fundamental unanswered questions that has been bothering mankind

during theAnthropocene is whether the use of swearwords in open source code is positively

or negatively correlated with source code quality. To investigate this profound matter we

crawled and analysed over 3800 C open source code containing English swearwords and

over 7600 C open source code not containing swearwords from GitHub. Subsequently,

we quantified the adherence of these two distinct sets of source code to coding standards,

which we deploy as a proxy for source code quality via the SoftWipe tool developed in our

group. We find that open source code containing swearwords exhibit significantly better

code quality than those not containing swearwords under several statistical tests. We

hypothesise that the use of swearwords constitutes an indicator of a profound emotional

involvement of the programmer with the code and its inherent complexities, thus yielding

better code based on a thorough, critical, and dialectic code analysis process.
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1 Introduction and Preliminaries

1.1 Introduction

One of the most commonly known software failures caused by lack of software quality is

the failed maiden flight of the Ariane 5 rocket on the 4th. June 1996 [28]. This disaster

made it obvious that code quality is a very important often times overlooked part of

software development.

There are different approaches to code quality, with one of the most popular being the

guidelines that Robert Cecile "Uncle Bob" Martin popularised with his book Clean Code. In

his book he has an entire chapter dedicated to the naming of variables, functions, classes

etc.. His rules state that amongst other things, you should not be cute or use puns while

naming [17]. This lead us to the question whether the use of swearwords in comments and

in code affects the overall code quality. Our hypothesis going into this study was that there

would not be a statistical difference between repositories that contain swearwords and the

control group, which contains repositories that may or may not contain swearwords. To

test this hypothesis we developed a program that gathers repositories from both groups

on GitHub. This was done utilising the GitHub API, which allowed us to directly search

for repositories containing swearwords. After identifying and downloading repositories

we assess their code quality using the SoftWipe tool [30], which returns a score in the

range from 0 (low) to 10 (high) that correlates to the code quality. Repositories containing

swearwords have to pass an additional test, which confirms the presence of swearwords

by using regular expressions.

After this data crawling and evaluation was done, we had a sample size of ≈ 3800 for

repositories containing swearwords as well as ≈ 7600 repositories for our control group.

We then used several visual and statistical tests to determine the difference between the

two samples. These tests included normality tests, such as the Shapiro-Wilk test, as well

as hypothesis tests that compare the two samples and two sample means with each other.

We also investigated the quality of our result by using confidence intervals.

1.2 Preliminaries

In this section, we cover some basic GitHub notions and terminology and the Git-API. We

also briefly introduce the SoftWipe tool, regular expressions, and automatons.

1.2.1 GitHub and Git-API

GitHub: GitHub is a service that provides version control and other useful features

for software development. It comprises more than 28 million public repositories and is

1



1 Introduction and Preliminaries

the source of the open source code repositories (datasets) for our analysis. [29] GitHub

also allows users to keep track of projects that are of interest to the user by rating a

project/repository with a star. These stars are essentially the "likes" of GitHub [8] and

have the following two effects:

1. They allow the user to find the repository easily again in the future

2. It is (informally) a measure of popularity, which allows other users to find popular

and possibly interesting repositories.

We will use stars as a measure of popularity later on.

Git-API: The Git-API allows the user to interact and automate processes with Git. The

documentation is available at https://docs.github.com/en/rest?apiVersion=2022-11-

28. For our use case, the most important function is the code search feature, which

allows us to construct search queries to quickly search GitHub for repositories containing

swearwords. We also use the repository search feature to obtain the general population,

meaning repositories without any special traits. We needed to handle multiple restrictions

of the Git-API in order to efficiently download the repositories. We list these restrictions

below.

Restrictions of the Git-API

1. The 1000 results per search-query are split into pages with a maximum of a 100

results per page. The page number and the number of results on a page can be

passed as parameters via the API.

2. The rate limit is capped at 30 requests per minute if one is authenticated. To get au-

thenticated, one needs to have a GitHub account and create a token. An explanation

of how to create an authentication token can be found at: https://docs.github.

com/en/rest/guides/basics-of-authentication?apiVersion=2022-11-28

3. The timeout can result in less then 100 results per page being returned if the query

takes a long time to process. This can be avoided by lowering the results per page

below 100 but this also increases the overall search time as the secondary rate limit

appears to be hit more frequently.

4. The secondary rate limit is an important feature to keep the API from being abused

by limiting aggressive polling and compute-intensive tasks [7]. In our case it is

something we frequently encountered as the code-search constitutes a compute-

intensive poll and is therefore constrained by the secondary rate limit.

A more detailed explanation of the inner workings of the Search-API is available at

https://docs.github.com/en/rest/search?apiVersion=2022-11-28.
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1.2.2 SoftWipe

SoftWipe [30] is an open source tool and benchmark to assess, rate, and review scientific

software written in C or C++ with respect to coding standard adherence. The coding

standard adherence is assessed using a set of static and dynamic code analysers such

as Lizard (https://github.com/terryyin/lizard) or the Clang address sanitiser (https:

//clang.llvm.org/). It returns a score between 0 (low adherence) and 10 (good adherence).

In order to simplify our experimental setup, we excluded the compilation warnings, which

require a difficult to automate compilation of the assessed software, from the analysis

using the --exclude-compilation option.

1.2.3 Regular Expressions and Automata

Definitions

• a finite alphabet Σ is a finite set of symbols

• a finite sequence of symbols 𝑒 ∈ Σ is defined as a word 𝑤

• two words𝑤1 and𝑤2 can be concatenated to𝑤3 = 𝑤1 · 𝑤2 = 𝑤1𝑤2

• 𝑤 𝑖
is defined as concatenating𝑤 with itself i-times

• the empty word is 𝜀 and part of every alphabet Σ and𝑤0 = 𝜀

• ∗ is called the Kleene closure is the set of all possible concatenations, e.g., {𝜀,𝑤,𝑤2, ...}

• a formal language 𝐿 over the alphabet Σ is defined as : 𝐿 ⊆ Σ∗

Deterministic Finite Automaton: A Deterministic Finite Automaton (henceforth DFA) is

defined as follows: For a finite alphabet Σ a DFA is a quintuple (𝑄, Σ, 𝑞0, 𝐹 , 𝛿) where:

• 𝑄 is a finite set of states

• 𝑞0 ∈ 𝑄 is the initial state

• 𝐹 ⊆ 𝑄 is the set of end states

• 𝛿 is a function 𝛿 : 𝑄 × Σ → 𝑄

which is usually represented as a directed graph where 𝑞𝑖 ∈ 𝑄 is a node and 𝛿 : 𝑄 ×Σ → 𝑄

are labeled edges between nodes. [20]

Nondeterministic Finite Automaton: A Nondeterministic Finite Automaton (henceforth

NFA) is defined like a DFA with the only difference that 𝛿 is now defined as 𝛿 : 𝑄 ×Σ → 2
𝑄
,

which means that one state and a letter can now transition into multiple different states (a

subset of the Q power set) as well as the null/epsilon transition being allowed, meaning

that we can jump from state 𝑎 to state 𝑏 without reading a character. [20]
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1 Introduction and Preliminaries

Regular Language: A language 𝐿 ⊆ Σ∗
is called regular if one of the following is true

(inductive definition):

• Base case:

– 𝐿 = {𝑎} with 𝑎 ∈ Σ

– 𝐿 = {𝜀}

– 𝐿 = ∅

• Induction: There are regular languages 𝐿1, 𝐿2 so that:

– 𝐿 = 𝐿1 · 𝐿2

– 𝐿 = 𝐿1 ∪ 𝐿2

– 𝐿 = 𝐿∗
1

[20] and [26].

Regular Expression: A regular expression (henceforth regex) is defined over an alphabet

Σ as an expression 𝑒 of the form: 𝑒 ::= ∅ | 𝑎 | 𝑒1 · 𝑒2 | 𝑒1 + 𝑒2 | 𝑒∗ for any 𝑎 ∈ Σ. Where

brackets are allowed to denote groups e.g. (𝑎 · 𝑏)∗. Where:

• ∅ is the empty set

• 𝑒1 · 𝑒2 is the concatenation of two regular expressions, meaning a logical and as both

𝑒1 and 𝑒2 need to be true.

• 𝑒1 + 𝑒2 is equivalent to a logical or as either 𝑒1 and 𝑒2 need to be true.

• 𝑒∗ is the Kleene closure with the same definition as given above, with the only

difference being that instead of words you have another regex.

[20] In reality there are a lot more defined meta-characters, such as [𝑎 − 𝑧] denotes the
regex that accepts all characters of the alphabet. A list of such meta-characters in practise

can be found at: https://github.com/google/re2/wiki/Syntax.

Equivalence of Regular Expressions and DFAs: The statement:

regular language⇔ regex⇔ NFA⇔ DFA,

is true and proven. The proof can be found in [20]. It is important to note that in order to

transform a NFA to a DFA usually a power set construction is used, which increases the

amount of states from |𝑄 | original states of the NFA to 2
|𝑄 |

states for the DFA.

4
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1.2 Preliminaries

1.2.4 General Setup

Our study only considers open source code written in the C programming language and

found on GitHub. While it is technically feasible to extend this to C++ using the same

crawling and data analysis scripts, we decided to disregard C++ code for the sake of

simplicity and due to time constraints. However, we are agnostic as to whether C++

programmers have the same mindset as C programmers or are politically more correct.

Therefore, we are cautious with respect to generalising our findings to the object-oriented

programming community.

As outlined in the abstract, we only focused on English swearwords. For the swearwords

we used the swearword dictionary (https://www.noswearing.com/fulldict.xml) as refer-

ence, which contains over 300 English swearwords.

For data crawling and analysis, we developed a Python program that runs on an external

server with 64GB RAM and 12 cores and 500GB storage space using Linux (CentOS).

The program itself is divided into a data crawling module and a data evaluation mod-

ule. The data crawling module consists of two scripts, one for searching the repositories

(search_repos) and the second for downloading them (download_repos). The data evalua-

tion module comprises the evaluator_parallel script.

5
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2 Data Gathering, Evaluation and Analysis
Methods

2.1 Data Crawling and Evaluation Approach

This section covers the methods used to gather/crawl and evaluate the source code data as

well as the restrictions and optimisations we deployed.

2.1.1 Why we chose the Git-API

Our initial idea was to deploy web scrapping using beautiful soup, which is a "library

for pulling data out of HTML and XML files" [2]. With this library, we planned to build a

web scrapper which was supposed to directly search for repositories with swearwords

on the GitHub web page. This idea was quickly discarded as we took a closer look at the

Git-API and realised that it provided all the functionality we needed. Web scraping has

the advantage of imposing fewer restrictions than the Git-API, namely the maximum of

1000 results per search query (1), and the rate limit (2). However, the Git-API is faster

and easier to use. To use this API, some form of URL library like the requests library is

necessary to execute the URL queries.

2.1.2 Source Code Repository Crawling

This section covers the basic structure of the implementation of the aforementioned

data crawling module of our Python program (i.e., the search_repos and download_repos

scripts). More details are provided in the following sections.

Definitions: We distinguish between two fundamental types of repositories:

• swear-reposwhich are repositories obtained through the Git-API code search function
and contain swearwords.

• star-repos which are repositories obtained through the Git-API repository search and

are rated 4 stars or higher. Note that these repositories can also contain swearwords.

2.1.2.1 Repository Filtering

Before outlining the crawling details, we initially describe the two universal repository

filtering criteria we deploy. First, we deploy a size limit of 625MB for repositories. Second,

we limit the per-repository execution time of our coding standards adherence tool SoftWipe

7



2 Data Gathering, Evaluation and Analysis Methods

[30] to one hour. Note that SoftWipe needs to execute several code analysis tools and

hence execution times might become prohibitive for the more than 1000 repositories we

finally analyzed. More details will be outlined in the evaluation Section 2.1.3 further below.

Rationale for size limit: During preliminary experiments we noticed that SoftWipe re-

quires excessive execution times on big repositories. To address this issue, we explored

the 95 percentile with respect to repository size of the first 800 downloaded repositories

containing swearwords, which approximately amounts to 625MB. This was subsequently

used as a size restriction for swear- and star-repos. This limit can be enforced directly via

the URL query for star-repos but only indirectly, after the actual download for swear-repos

since there is no repository size parameter in the code-search query.

Quality filtering: For the star-repos, we only consider repositories evaluated with four

stars or more. This restriction was put into place to filter out barely known or used

repositories and to only consider repositories of presumably higher quality as a reference

for comparison. Note that stars, as mentioned in Section 1.2.1, do not represent a direct

measure of the quality of a repository. Instead, they indicate that users found the repository

helpful and/or interesting. However, one can assume that repositories which are of interest

to people and are more widely used at least exhibit a decent level of code quality. The 4

star boundary was chosen arbitrarily. The rationale behind that was only based on the

assumption that repositories are most likely pareto distributed according to stars and

quality, meaning that even excluding repositories with only a small amount of stars will

exclude most GitHub repositories and yield more high-quality repositories.

2.1.2.2 General crawling implementation

For a visual representation of the data crawling for swear-repos refer to Figure 2.1 which

will be explained in this chapter.

For each Git-API search, a URL needs to be constructed, which is subsequently passed as a

parameter to the aforementioned requests library. The requests library then returns either

a requests object or an error code.

For every repository we store its name, number of stars, original URL, download URL and

the authors’ name. This is stored in a JSON file named after the search criterion and the

programming language, meaning in the case of the swearword search after the swearword

(e.g. fuck_C.json) or in the case of the repository-search after the star interval. Repository

download works as a search by running the previously extracted download URL with the

requests library. This returns a zip- or a tarball which is extracted and saved on the current

machine, in our case the server we used. As we only search for repositories containing

a single swearword at a time, a repository containing two swearwords such as shit and

fuckmight be found twice. For this reason, a check is required to verify that the repository

has not already been downloaded previously. After the download is fished the "crawling"

module terminates and the evaluation module is invoked (see Chapter 2.1.3).

8



2.1 Data Crawling and Evaluation Approach

Figure 2.1: Flowchart of the data crawling

9



2 Data Gathering, Evaluation and Analysis Methods

2.1.2.3 API search

In general, the search is executed by running the constructed search URL with the requests

library. The response of the Git-API will in general be structured like a python dictionary,

which stores unordered key-value pairs [21]. This response contains information such

as the name of the repository and author as well as the download URL. Some more

meta information such as the number of stars are also passed as a URL and need to

be queried for separately by passing the URL to the response library again. For the

complete response scheme, please refer to https://docs.github.com/de/rest/search?

apiVersion=2022-11-28#search-code. The possible search functions of the API are the

following:

• Search-code

• Search-commits

• Search-issues-and-pull-requests

• Search-repositories

• Search-topics

• Search-users

[9]

URL construction To identify swear-repos, we conduct a search for swearwords in the

dictionary over the source code of the repository. Parameters that can be passed here are

the following:

• A string (swearword) the code needs to contain. This is the only parameter that

needs to be set, as the remaining parameters are optional.

• The programming language in which the file containing the string is written.

• The page and the amount of results per page.

• And the sort order (ascending, descending), in regards to how recently the GitHub

search system has indexed a file. [9]

For star-repos we conduct a repository search without any key words. However, we do use

a star interval to only select repositories rated with four or more stars. It is important to

give a star interval and not just to search for repositories with the flag "stars > 3" because of

the maximum of 1000 results per query. Other parameters in addition to the stars and the

repository name that can be set are the repository size and the aforementioned parameters

for page dimensions and sorting.

2.1.3 Repository Evaluation

This section will cover the functionality of the evaluator_parallel script of our program

as well as the improvements we made to that process.

10
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2.1 Data Crawling and Evaluation Approach

Figure 2.2: Example output of tokei [6]

2.1.3.1 Repository Analysis

Our evaluation starts by counting the lines of code (LoC) in a repository using tokei

which is a very fast tool to count the lines of code sorted by language. An example output

of tokei is provided in Figure 2.2. In our case we are only interested in the value for C

code. Then, we count and also verify again for the sake of correctness that the repository

contains swearwords using a regular expression. If the presence of swearwords is not

verified for a repo labelled as a swear-repo, it is discarded. The last step in our verification

and evaluation pipeline is the execution of the code quality adherence test with SoftWipe

to obtain a respective code quality score. This is the data analysis step which required the

largest fraction of computing time. Finally, we calculate the swear factor as the number

of swearwords divided by the lines of code and save all the relevant data in a file. That

corresponds to one result file per repository, which has the benefit of avoiding potential

concurrent file access issues with the parallelisation. After the evaluation is completed,

the repository is compressed using gzip to save storage space. A visual representation of

this process is provided in Figure 2.3.

Counting Swearwords A key question to be addressed is how to efficiently search millions

of lines of code for over 300 swearwords without any false positives. A general rule for

this is that we prefer to underestimate the number of swearwords in the repository rather

then overestimating them since this process is used to confirm the presence of swearwords

in the code. This might appear unnecessary since we already know that there swearwords

should be present in a swear-repo due to the git code search. However, for the sake of

verification, we check again for the presence of swearwords to rule out any programming

mistakes. For this we initially tested the regex function of the standard re library which

is relatively fast and under the condition that the regular expression is properly defined

does not yield any false positives. This was later found to constitute a computational

bottleneck and was speed up by using the re2 library. For more information on this,

refer to Section 2.1.3.2. This raises the general question as to what we should consider as

being a swearword in the source code. We consider the following three cases specified by

11



2 Data Gathering, Evaluation and Analysis Methods

Figure 2.3: Flowchart of the evaluation process

12



2.1 Data Crawling and Evaluation Approach

regular expressions (regex) as swearwords. Below you will find the regex used to identify

swearwords that is split into three parts. We use the following notation:

• swearword is a variable for the swearword in lower case

• swearword_first_cap is a variable for the swearword with the first letter capitalised

(caps)

• swearword_caps is a variable for the swearword with all letters capitalised

• the white spaces are included here for the sake of readability but are not contained

in the actual regular expression as this would obviously affect the results

• S* is an arbitrary string which can be empty

• \b denotes the start and, in the second occurrence, the end of the word

• (-|_|[0-9]) this is the group of allowed separating characters sometimes supple-

mented by [A-Z]. One can argue that we should allow substantially more special

characters, such as * or + as separating characters. However, these are not only un-

common, but they might dilute the context. With the current small set of separating

characters, we can assume that the programmers intention was to swear.

The entire regex is as follows:

1. \b\S*(-|_|[0-9]) swearword ((-|_|[A-Z]|[0-9])\S*)?\b|

2. \b\S*(-|_|[0-9]))? swearword_first_cap ((-|_|[A-Z]|[0-9])\S*)?\b|

3. \b(\S*(-|_|[0-9]))? swearword_caps ((-|_|[0-9])\S*)?\b

The explanation for cases 1 to 3 is as follows:

1. This captures the swearword itself as well as camelCase with the swearword in

the beginning and snake_case. Of course, there are also cases outside of these

styles, such as And_fuckThis1example. While this is stylistically horrible this should

obviously be a hit as well. More examples for the swearword fuck are:

• what_the_fuck

• fuck10

• fuckThis

2. This case is mostly intended to capture the swearword itself and the camelCase

where the swearword is in the middle. Of course this detects some stylistic oddities

as well. Examples for the swearword fuck are:

• whatTheFuck

• Fuck

• this_Fuck-ingOddity

13
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3. This third and last case predominantly serves to capture the swearword in caps and

the odd snake_case where the swearword is in caps. This is probably the least likely

case to occur. Examples if the swearword is fuck are:

• WHAT_THE_FUCK

• FUCK

• FUCK_MY-badExamples

All three cases are connected with an or expressed as | in the regex. Thus, we receive one

regex per swearword. A debatable example regarding the definition of the above regular

expression is that bosshitpoints will not be identified as swearword, but bosShitPoints

will. However, our rationale is that the latter is intended by the programmer and should

therefore count as swearing.

The disadvantage of using regular expressions is obviously that the broader swearing

context is being ignored as are swearwords outside the ones defined in our dictionary. Also,

without context or the inclusion of English grammar, swearwords such as zeroFucksGiven

or this_fucking_sucks will not be found.

2.1.3.2 Runtime Bottlenecks and their Optimisation

As mentioned previously, the two largest performance bottlenecks are the execution times

of SoftWipe and the identification and counting of swearwords using regular expressions.

In the following, we will explain why they affect runtimes and how we alleviated the

performance issues.

Parallelisation: We implemented two optimisations to accelerate the analyses. First, we

parallelised the entire evaluation process in a straightforward way since the evaluations

of individual repositories are independent from each other. In the first version of the

program, the evaluation depended on a single result file, but this was changed so that

the evaluation module produces one output file per repository. This was done to avoid

concurrent writing file accesses.

The task-level parallelisation over repositories was implemented by deploying the standard

python multiprocessing library, which allows the user to create and concurrently execute

multiple processes. The documentation can be found at https://docs.python.org/3/

library/multiprocessing.html.

The parallelisation yielded an approximately 6-fold run-time improvement on 6 cores

compared to 1 core. As SoftWipe itself is also already parallelised, only half of the available

cores on the server were used.

Re2 library: The second optimisation was to replace the standard re library for regular

expressions by the re2 library developed by Google. For more information regarding the

re2 library please refer to https://github.com/google/re2. The re2 library guarantees

execution in linear time, as it creates a DFA for the regular expression. As we have seen in

the Section 1.2.3 every regular expression can be translated into a NFA which again can be

translated into a DFA. However, this translation from NFA to DFA adds ≤ 2
𝑄
new states if
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𝑄 is the set of transitions of the NFA. This is the reason why we could not combine the

swearword regular expressions to one regex, since that led to an error. For a more detailed

explanation of this and how it works in regards to re2 specifically, please refer to [22]. As

mentioned in the previous chapter 2.1.3.1 we currently have one regex per swearword.

We could further concatenate those regex with an or and end up with a large regex for

all swearwords. However, while this is theoretically possible, this regex is too large for

the re2 library and cannot be compiled into a DFA due to the previously mentioned ≤ 2
𝑄

new states. Thus, we keep every swearword in a separate regex. To see the difference of

re compared to re2 we implemented a benchmark, which counts two repositories. The

resulting time was 579 seconds for the re library compared to only 8 seconds for the re2

library. One could try to further improve the performance by connecting some swearwords

to one regex. However, the performance increase was substantial enough that further

optimisations where deemed unnecessary as SoftWipe is still the biggest bottleneck.

2.1.4 Error Handling

This section will focus on possible errors that can occur during the execution of the

program and how we dealt with them. It covers the re-entry mechanism which allows us

to restart the program at the same point it was before the stop, as well as the errors that

can occur during the data crawling or the evaluation.

2.1.4.1 Re-entry points of the program

To prevent the loss of progress if the program comes to a preemptive halt, a start-stop

mechanism was implemented. There are 3 critical points in the program:

1. After the search

2. After the downloading

3. After the evaluation

After reaching each of those critical points we write the progress to a file. The re-entry

works by reading the file and then skipping the steps (1 to 3) until we reach the last entry

point and continue from there. The specifics of re-entry depend on the step we were on

previously and are listed below:

1. We simply re-run the search query.

2. This is tied into our mechanism, which looks at whether a repository has been

downloaded before. This way we ensure that the program continues exactly where

it left of.

3. As each process writes a separate file after successfully executing SoftWipe we just

check if for the repositories we need to evaluate a result file exists.
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2.1.4.2 Data crawling errors

While data crawling we mainly need to focus on errors occurring while using the search

function of the Git-API. Especially the primary and secondary rate limits that were men-

tioned before in Section 1.2.1 are things we need to watch out for. If either is hit, we wait

for a few seconds and repeat the query. Errors that just limit the amount of possible repos-

itories we get are ignored (e.g., the time limit of the Git-API or errors while downloading),

as we just need data and do not need precision here.

2.1.4.3 Evaluation errors

As a general rule if an error occurs somewhere in the evaluation step the repository is

discarded. When evaluating, there are three main types of errors we need to look for. The

first are errors occurring while using tokei, where we only confirm whether the repository

contains C code. The second possible error is specific to the swear-repos, as we need to

confirm the presence of swearwords in the repository. The last type of error are errors that

can occur while running SoftWipe. This can be SoftWipe terminating without returning

a score or the imposed time limit of one hour terminated SoftWipe. In either case, the

general rule applies and the repository is discarded.

2.2 Data Analysis

This section will go over and explain the tests we used, as well as discuss the results we have

obtained. To implement statistical tests, the scipy library was used in conjunction with

numpy. The documentation for the statistical functions of the scipy library can be found

at https://docs.scipy.org/doc/scipy/reference/stats.html. We used pandas (https:

//pandas.pydata.org) for the data management and csv import. The matplotlib (https:

//matplotlib.org) library was used for the visualisation of the data in a jupyter notebook

(https://jupyter.org).

2.2.1 Definitions

1. A population is a discrete group of things that can be identified by at least one

common denominator. One usually only has a sample of said population which is

used in a variety of tests to draw conclusions for the entire populations. [27]

2. The general population is in our context the set of all open-source repositories on

GitHub and comprises repositories that are somewhat popular and do not exceed a

certain size. Our set of star-repos is a sample of this general population.

3. The target population is the set of all open-source repositories on GitHub that contain
swearwords where again our swear-repos are a sample of said population.

4. The null hypothesis usually denoted 𝐻0 is the hypothesis which a statistical test is

designed to test. [19]
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5. The alternative hypothesis is the opposite hypothesis of 𝐻0 and is accepted if the test

rejects 𝐻0.[19]

6. A statistic is a random variable, which can be calculated after observing the sample

data from the sample data an example for such a statistic is the sample mean 𝑋 . [24]

7. A point estimate of a parameter 𝜃 of the population is a single number that is close

to the true value of 𝜃 . An example for such a parameter 𝜃 is the population mean 𝜇,

which can be approximated by calculating the sample mean 𝑋 . This sample mean is

then called a point estimator of 𝜃 . Such a point estimator can be any suitable statistic.

[24]

8. An empirical distribution function of a sample simply takes the original sample and

assigns each value 𝑥1, 𝑥2, ..., 𝑥𝑛 the probability 1/𝑛. [25]

2.2.2 Data Analysis Methods

To analyse the gathered data we deployed several different visual and statistical tests.

Defining our goal: We have obtained two large samples by running our program. With

those two samples we want to achieve two main things:

1. We want to draw a conclusion from the sample to the underlying population. Mean-

ing we consider both samples separately and draw conclusions about the population

based on that single sample.

2. We want to draw a conclusion on the relationship between the target and the general

population by comparing the two samples with each other.

This is done to determine if swear-repos do have a higher/lower code quality than the

general population.

To justify and explain what we are doing, we give a brief introduction to the relevant

statistical theory.

2.2.2.1 Central limit theorem

The central limit theorem states "that the sum of a sufficiently large number of independent

identically distributed random variables approximately follows a normal distribution." [3].

This especially means that each statistic of the form 𝑆𝑛 =
∑𝑛
𝑖=0

Ψ(𝑋𝑖)/𝑛 will asymptotically

converge to a normal distribution if the mean and variance are finite [14]. If Ψ(𝑥) = 𝑥 the

expression 𝑆𝑛 is the mean, which will be relevant later on.

2.2.2.2 Statistical tests based on a single sample

For a sample it is fairly easy to calculate a point estimator e.g. the sample mean 𝑋 . But

there is no indication of the accuracy of this estimation. Something more sensible than

a point estimator is a confidence interval, which returns an interval of plausible values
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for the statistic. Such a confidence interval is calculated with a confidence level, which

is commonly set at 90%, 95% or 99%. Contrary to popular belief, this confidence value

does not imply that the true value of, e.g., the population mean 𝜇 is in the 95% confidence

interval with a probability of 95%. What it does mean is given an arbitrary not too small

amount of samples, 95% of those samples give an interval that contains 𝜇. The accuracy

of the confidence interval can be seen by its width, which means that large confidence

intervals are less meaningful compared to small confidence intervals. The problem with

confidence intervals is that there are two requirements to calculate them:

1. The population has to be normally distributed

2. The true value of the population standard deviation is known.

Especially the second requirement is rather unrealistic in a real scenario. However given a

large sample size one can ignore both requirements and substitute the population standard

deviation for the sample standard deviation, a proof of which can be found in [24]. One

method to use confidence intervals despite not having a large sample size is the bootstrap.

2.2.2.3 Bootstrapping

Bootstrapping is a re-sampling method that returns measures of accuracy for a given

sample statistic. An example for these measures of accuracy is a confidence interval and a

standard error, and an example for the test statistic could be the mean or the variance. It

can also be used to approximate the sampling distribution. Two of the main advantages

are that it is a rather straightforward process and that it does not assume any underlying

distributions. Since a larger sample decreases the variance of an estimator (proof in

[25]) and bootstrapping artificially increases the sample size, it generally helps with the

estimation. For us, it is a great tool to approximate population parameters.

The Idea behind bootstrapping: It is generally done by re-sampling the original sample

with replacement, meaning that it creates a new sample from the empirical distribution

function [16]. More concretely for the given point estimator
ˆ𝜃 we generate a new sample

by drawing from the empirical distribution function of the original sample and calculate a

point estimate of that newly generated sample. This processes is then repeated an arbitrary

amount of times, commonly 999 or 9999 depending on computing power. This results

in returning an estimated distribution function of
ˆ𝜃 referred to as 𝐹 ˆ𝜃

. We can then look

at statistics for 𝐹 ˆ𝜃
to determine the accuracy of our point estimator

ˆ𝜃 . This method is

generally known as non-parametric bootstrap. [25]

There are a lot of different ways as to how to actually do the bootstrapping that don’t

necessarily use the empirical distribution function to sample e.g. Monte Carlo algorithm,

Bayesian Bootstrap, which will not be discussed here. For more information please refer

to [16] or [5]. For the implementation of this method we used the scipy library (https:

//docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html).

[24]
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2.2.2.4 Inferences based on two samples

One of the easiest ways to compare two populations with two respective means 𝜇1 and 𝜇2

is to compare the means by calculating the difference 𝜇1 − 𝜇2. Given a sample for each of

the populations, we can now estimate this difference by replacing the population mean

𝜇𝑖 with the respective sample mean. This results in a new point estimator for which we

theoretically could compute a confidence interval. However, a more common way to test

this is to create a hypothesis test with 𝐻0 being the assumption that 𝜇1 = 𝜇2. A test that

does exactly that is Welch’s t-test which will be covered in Section 2.2.2.9

2.2.2.5 Significance testing

Significance tests are used to test a hypothesis based on one or more samples. The main

hypothesis we want to test are:

1. Does our target population have the same average SoftWipe score compared to the

average SoftWipe score of the general population?

2. Does the target population and the general population follow the same distribution?

For a significance test, you need a test statistic 𝑆 (𝑋 ), which is a real function of the sample

data 𝑋 , where large values mean that the null hypothesis is in doubt, and smaller values

mean that there is no doubt about the null hypothesis. This function 𝑆 (𝑋 ) is accompanied

by a probability function 𝑃 (𝑆 (𝑋 )) returns the probability of obtaining the test statistic

𝑆 (𝑋 ).

p-value: This paragraph focuses on the p-value and its interpretation and possible mis-

conceptions. The idea behind the p-value is that it gives a "probability of getting a test

statistic 𝑇 (𝑋 ) larger than or equal to the observed result."[10]. It is a random variable that

is uniformly distributed if 𝐻0 is true. It is generally used to reject 𝐻0 if it is smaller than a

given significance level 𝛼 (commonly 0.05 or 0.01). There are many misconceptions about

the p-value, the most common being that it is the probability that 𝐻0 is true. Another

incorrect assumption is that 1 − 𝑝 is the probability that the alternative hypothesis is true.

[18] The p-value has to be treated carefully as a small p-value can in some cases also be

the fault of a large sample size and just small deviations from 𝐻0 [24]. For this reason

we give the resulting statistic and the p-value as well as a visual approach to the tests to

conclude our results.

2.2.2.6 Jarque-Bera test

Our goal with this test is to assess if the data are normally distributed. This test only tests

the skewness and kurtosis of the sample and compares them to the skewness and kurtosis

of the normal distribution, which are 0 and 3. It works in analogy to the aforementioned

statistical tests by calculating a statistic 𝐽𝐵. If this test statistic is sufficiently large, the

assumption of normality can be rejected. 𝐽𝐵 is defined as follows:

𝐽𝐵 =
𝑁

6

(
𝑊 2 + (𝐾 − 3)2

4

)
(2.1)
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where 𝑁 is the sample size,𝑊 is the sample skewness and 𝐾 the sample kurtosis.[11] For

more details, please refer to [12]. Here, we use JB test implementation in scipy again,

which requires a sample size > 2000 to work. If the sample size is below 2000, we need to

use another test, such as the Shapiro-Wilk test which only works for up to 5000 samples.

2.2.2.7 Shapiro-Wilk test

Q-Q plot The Q-Q plot is an informal way to test the normality of a sample. It visualises

the quantiles of the ordered observed sample𝑋1, ..., 𝑋𝑛 compared to the theoretical quantiles

of the normal distribution [14]. Normality is concluded by how close the data points in the

plot are to a linear function, which symbolises where the values of a normal distribution

would accumulate.

The Q-Q plot is a subjective tool for assessing normality. However, the idea can be used to

implement a more objective hypothesis test. This test is called the Shapiro-Wilk (SW) test,

which assesses how well the observed quantiles fit the theoretical ones.[14]. A drawback of

this test is that it only works for a sample size of up to 5000. [23] To implement this test the

shapiro function of the scipy library was used. The documentation can be found at: https:

//docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html.

2.2.2.8 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS-test) can be used as a goodness-of-fit test where a

random sample is compared to a known distribution and it is possible to evaluate how

likely the sample could have been obtained from that distribution. However, there is a

second use case that is more relevant in our context. The KS-test can also be used to

compare two samples with each other. These two samples, 𝑋 and 𝑌 , can be of different size

and from different populations with unknown distributions 𝐹 (𝑥) and 𝐺 (𝑥). The KS-test
assesses the null hypothesis 𝐻0 := 𝐹 (𝑥) = 𝐺 (𝑥) for each 𝑥 . Hypothesis 𝐻0 is rejected for

the significance level 𝛼 , if𝑇 > 𝑡𝑛,𝑚,1−𝛼 , where𝑇 is the test result and 𝑡𝑛,𝑚,1−𝛼 is the value of
the Smirnov-table with the parameters 𝑛,𝑚 and 1 − 𝛼 where 𝑛 is the sample size of 𝑋 and

𝑚 is the sample size of 𝑌 . The test 𝑇 is defined as:

𝑇 = sup

𝑥

|𝐻1(𝑥) − 𝐻2(𝑥) |, (2.2)

where 𝐻1(𝑥) and 𝐻2(𝑥) are the empirical distributions of the respective samples. [15]

To implement this test the ks_2samp function of the scipy library was used. The docu-

mentation can be found at: https://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.ks_2samp.html.

2.2.2.9 Welch’s t-test

The Welch’s t-test is an approximate solution for the Behrens-Fischer problem, which is

defined as follows:

20

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html


2.2 Data Analysis

Behrens-Fischer Problem: We want to conclude whether the means of two independent

normal populations given two independent samples 𝑋1 and 𝑋2 from these respective

populations are equal without assuming equal variances. [4]

This problem is solved by assuming equal variance and tested for with the Students t-test.

The test statistic of the Welch’s t-test is given by:

𝑇 =
(𝑋1 − 𝑋2) − (𝜇1 − 𝜇2)√︃

𝑆2

1

𝑛1

+ 𝑆2

2

𝑛2

, (2.3)

where 𝑛𝑖 is the sample size, 𝑆𝑖 is the standard deviation, 𝜇𝑖 is the expected value, and 𝑋𝑖 is

the mean of the arithmetic sample.

Normality assumption: The Welch’s t-test assumes normality for the sample means, but

not the underlying distribution. This leads to the question of whether this applies to our

case as well. The assumption is that they indeed are normally distributed, as is proven

by the central limit theorem. However, we did try to test this as well via bootstrapping

and the Jarque-Bera test, by generating a high number of bootstrap replicates (e.g., 10,000)

and calculating the mean of each of those samples. Then, one applies a goodness-of-fit

test such as the Jarque-Bera test, to these bootstrap samples. These resulting distributions

of the means where then visualised as a histogram, which you can find in Figure 3.5

and Figure 3.7. This shows that the assumption that the mean is normally distributed is

obviously true. This is further proven by the two Q-Q plots of this distribution in Figure

3.6 and Figure 3.8, as well as the Jarque-Bera, which does not reject 𝐻0. Our results of the

Jarque-Bera test can be found in the table bellow.

statistic p-value

star-repos 0.77 0.68

swear-repos 1.25 0.53

Table 2.1: Table containing the statistic and the p-value of the Jarque-Bera test for the

bootstrapped means

The advantages of this test are that different sample sizes for𝑋1 and𝑋2 are possible, as well

as the only assumption being that the means of the underlying populations are normally

distributed. Furthermore, the test is rather robust. [13]

21





3 Data Analysis Results and Conclusion

3.1 Test results

First, we did perform some visual tests on the data to get a sense of how the distribution

looks like. In Figure 3.1 we can see a histogram for the star-repos with an overlayed normal

distribution that is calculated from the sample mean and the sample standard deviation. It

seems to closely resemble a normal distribution. To test that theory we deployed a Q-Q

plot (Figure 3.2) combined with a Jarque-Bera test. The Jarque-Bera test strongly rejects

the notion of normality with a p-value ≈ 2 ∗ 10
−

20 and a statistic of ≈ 99.6. However, the

Q-Q plot suggests that the data is almost normally distributed, especially in the center,

which suggests that if we would need to assume normality for this distribution it would

most likely not lead to bad results given the test procedure is robust. The plot deviates

below 3 or above 9 from the theoretical normal distribution, which can be caused by a

lack of information, since the information density on the tails of a distribution is rather

low. Now the histogram for the swear-repos in Figure 3.3 and the Q-Q plot of that in

Figure 3.4 suggest that the data is likely not normally distributed. A Jarque-Bera and

Shapiro-Wilk tests further support this theory by giving p-values way below the 0.01 𝛼

significance level. The exact result of the statistic and p-value are: JB := statistic ≈ 90.07,

p-value ≈ 2.77 ∗ 10
−20

, SW := statistic ≈ 0.98, p-value ≈ 7.28
−21

. With the scatter plot of

the star-repos (Figure 3.10), which maps the SoftWipe score to the LoC, no significant

observation can be made except that there is a lot more data up to the 10.000 LoC mark.

The plot itself does not contain data points beyond 70.000 LoC since there are so few of

them and they dilute visibility. However, in the scatter plot of swear-repos in Figure 3.9,

some data clusters around the SoftWipe score of 8 are observed, which is consistent with

the spike in the histogram in Figure 3.3. To rule out that those clusters stem from the

same author who writes good software, and also uses swearwords, we deployed a rule

that only allows two data points per author. However, this did not affect the clusters and

is therefore not the reason for their appearance.

Now we are interested in the mean and respective confidence intervals of the samples. To

determine those, we deployed two main techniques per sample:

1. We calculated the arithmetic mean and confidence interval of the sample.

2. We calculate the bootstrap confidence interval of the sample, as well as its standard

error.

The significance level was established at 99% and the results can be seen in the table below,

rounded to two decimal places:

Both the bootstrapped and the arithmetic confidence intervals were the same and quite
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mean confidence interval bootstrapped confidence interval standard error

star-repos 5.41 [5.38 - 5.45] [5.38 - 5.45] 0.02

swear-repos 5.87 [5.81 - 5.93] [5.81 - 5.93] 0.01

Table 3.1: Table containing the arithmetic mean and confidence interval, as well as the

bootstrapped confidence interval and standard error of the two samples

narrow, suggesting good precision of our point estimate for the mean. Furthermore there

is no overlap in them, which suggests a statistically significant difference between the

two means. The reason for using bootstrapping was described in Section 2.2.2.2, which is

that confidence intervals need an underlying normal distribution and known population

variance to be computed. This should not be an issue for our sample size, since we can

approximate the population variance with the sample variance and assume a normal

distribution for the mean due to the central limit theorem, but we still used bootstrapping

to confirm that our calculation is correct. In Figures 3.5 and 3.6 you can see that the mean,

as the central limit theorem suggests, is indeed normally distributed. This is of course also

true for the swear-repos, which you can see in Figure 3.7 and 3.8.

The last step was to deploy the hypothesis tests to further confirm our results from the

visual tests. To test whether the two distributions are different, we used the KS-test,

which resulted in statistic ≈ 0.20 and p-value ≈ 3.17 ∗ 10
−89

. This leads us to reject 𝐻0 in

favour of the alternative Hypothesis, which is that the two distributions are not the same.

Furthermore, we ran the Welch’s t-test with 𝐻0 being that the two means are the same.

The result of the test where statistic ≈ 16.71 and p-value ≈ 2.04 ∗ 10
−61

, which also led us

to reject 𝐻0. This concludes our tests and leads us to conclude that there is a correlation

between swearing and an improvement in code quality. Obviously correlation does not

imply causation, which means that swearing in code does not automatically improve your

overall quality.

3.1.1 Interpretation

This study is also an observational study, as we do not control either group. This leads

to the problem that although we have a statistically significant difference between the

groups, it could be caused by other underlying factors [24].

It is very important to note that small p-values do not guarantee that the results are

replicable or that statistical significance implies practical significance [18]. This means

that swearing will not automatically improve the quality of your code. However, a study

showed that swearing in the workplace acts as a form of stress relief [1], which in turn

could then improve focus and therefore code quality. This might be a possible explanation

for the findings.
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3.1 Test results

Figure 3.1: The histogram of the SoftWipe scores of star-repos compared to the theoretical

normal distribution calculated from the sample mean and sample standard

deviation.

Figure 3.2: A Q-Q plot of the SoftWipe score of star-repos
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Figure 3.3: Histogram of SoftWipe scores for swear-repos compared to the theoretical

normal distribution calculated from the sample mean and sample standard

deviation.

Figure 3.4: A Q-Q plot of the SoftWipe score of swear-repos
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Figure 3.5: The histogram of the bootstrapped mean SoftWipe scores of star-repos com-

pared to the theoretical normal distribution calculated from the bootstrapped

sample mean and the bootstrapped sample standard deviation.

Figure 3.6: A Q-Q plot of the bootstrap sample of star-repos.

27



3 Data Analysis Results and Conclusion

Figure 3.7: The histogram of the bootstrapped mean SoftWipe scores of swear-repos com-

pared to the theoretical normal distribution calculated from the bootstrapped

sample mean and the bootstrapped sample standard deviation.

Figure 3.8: A Q-Q plot of the bootstrap sample of swear-repos.

28



3.1 Test results

Figure 3.9: Softwipe scores over LoC plot for swear-repos cut of at 70.000 LoC
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Figure 3.10: Softwipe scores over LoC for star-repos cut of at 70.000 LoC
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3.2 Conclusion and Future Work

By using the Git-API we successfully collected more than 3,800 repositories containing

swearwords. Those swear-repos were then evaluated with the SoftWipe tool to calculate

a score, which represents the code quality. Those swear-repos were then compared to

over 7600 repositories, which we selected to be our general population and also analysed

with the SoftWipe tool. This comparison was done by running multiple hypothesis tests,

such as the Kolmogorov-Smirnov test. These tests, combined with our visual analysis of

the data yielded the result that repositories containing swearwords exhibit a statistically

significant higher average code-quality (5.87) compared to our general population (5.41).

There are many things that you can consider to further add to this study. Of course "[...]

there’s no data like more data"-Kai-Fu Lee, thus obtaining more swearword samples is

of course of interest to us, as well as the possibility to include C++ code as well. During

the data crawling, one could of course also deploy natural language processing to more

accurately identify swearwords.

One of the key unanswered questions are the clusters in Figure 3.9. For this a more

thorough investigation into the similarities between these repositories could provide a

better inside into their existence.

Also, a more detailed study on how the numbers of lines of code or star restrictions affect

the data could be interesting. This can be further supplemented by investigating the

existence of a correlation of the number of swearwords per lines of code to the code quality

or by investigating the existence of a correlation between the number of stars to the code

quality. Since the Git-API returns a lot of information on the repositories there are a lot

more interesting investigations one could conduct, which would then drastically increase

the dimensions of the data and therefore increase the complexity of the analysis.
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