
EcoFreq: compute with cleaner energy via carbon-aware power scaling

Alexey Kozlov

Staff scientist
CME group, HITS gGmbH
alexey.kozlov@h-its.org

May 24, 2022

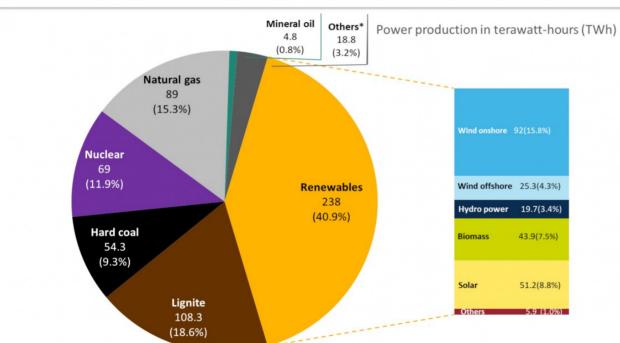
Top500 power trend

Faster hardware+software != energy savings

Efficient vs. Green

- Energy efficiency → relative improvement
 - More FLOPS/W, FLOPS/\$, FLOPS/rack, ...
 - Battery life, range, ...
- GreenIT → absolute impact
 - Negative "side effects"
 - Environment, climate, society
- 0% < overlap < 100%

Electricity sources


Technology	Risks			
	Climate	Environmental	Political	
Fossil (coal, natural gas)	_	_	_	5
Nuclear	+	+ /-	_	
Renewables	+	+	+	

Energy mix DE (2021)

Share of energy sources in gross German power production in 2021.

Data: BDEW 2021, preliminary.

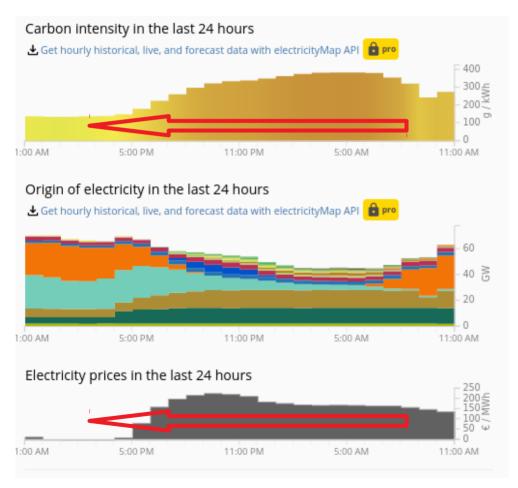
^{*}Without power generation from pumped storage

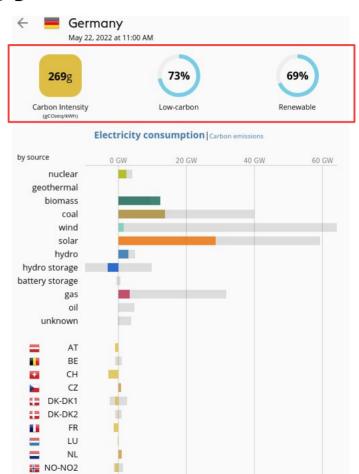
Note: Government renewables targets are in relation to total power consumption (561.8 TWh in 2021), not production. Renewables share in gross German power consumption 2021 (without pumped storage): 42.4%.

2014 IPCC, Global warming potential of s

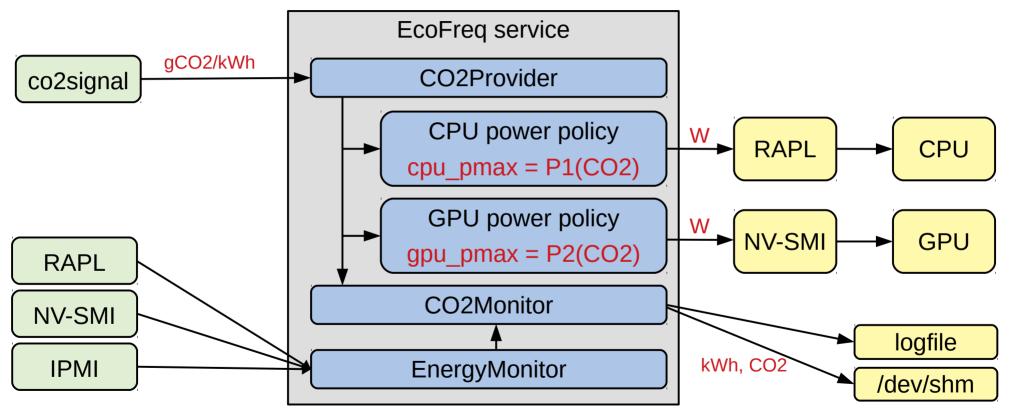
Life cycle CO₂ equivalent (including albedo effect) from selected electricity supply technologies. [2][3]

Arranged by decreasing median (gCO₂eq/kWh)


values.


Technology \$	Min. ¢	Median +	Max. ¢			
Currently commercially available technologies						
Coal - PC	740	820	910			
Biomass - Cofiring with coal	620	740	890			
Gas - combined cycle	410	490	650			
Biomass - Dedicated	130	230	420			
Solar PV – Utility scale	18	48	180			
Solar PV – rooftop	26	41	60			
Geothermal	6.0	38	79			
Concentrated solar power	8.8	27	63			
Hydropower	1.0	24	2200 ¹			
Wind Offshore	8.0	12	35			
Nuclear	3.7	12	110			
Wind Onshore	7.0	11	56			

Avg. carbon intensity:


~350 g CO₂eq/kWh

Real-time energy mix

Compute with cleaner energy

Proof-of-concept implementation: https://github.com/amkozlov/eco-freq

Input / optimization target

- Life-cycle CO2 → default
- Marginal CO2
- Renewable / low-carbon %
- Electricity cost

Carbon intensity data

- co2signal / electricityMap
 - 50+ countries worldwide
 - Real-time carbon intensity: free
 - Marginal, prices, historical data: paid service
- ENTSO-E
 - Europe/EU
 - Generation, load, prices history and forecast
 - Free

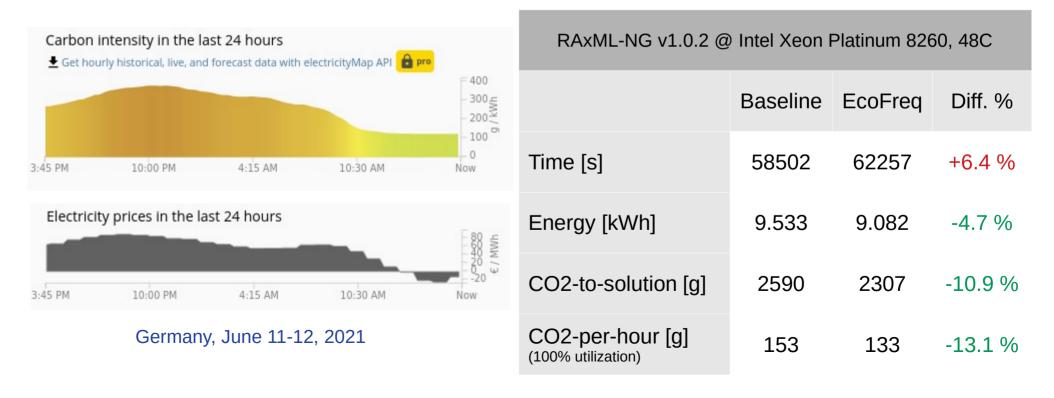
Power scaling: techniques

- RAPL / DVFS
 - Dynamic power / frequency limits → ~50% 100% TDP
 - Supported by most CPUs/GPUs (Intel, AMD, NVIDIA)
- Utilization capping
 - e.g. cpulimit: https://github.com/opsengine/cpulimit
- Adaptive parallelization
 - Adjust # threads / MPI ranks

Power scaling: advantages

- Transparent to the workload
 - No profiling, recompilation etc.
 - Long jobs are fine (no interruption / restart)
- Also works without job queue / scheduler
- No generation forecast needed
 - But can be used if available

Power scaling policy


- Linear (default so far)
 - Pmax ~ 1/CI, where CI = current carbon intensity
- Static / manual
 - e.g. 80% by default → usually best energy efficiency
 - Increase if: solar/wind surplus, low price, urgent job...
- Hardware- and workload-aware → future work

Evaluation metrics

- CO2-to-solution (cf. energy-to-solution)
 - Job perspective $\rightarrow \Sigma CO2$ over program runtime
- CO2-per-hour (-month/-year)
 - System-wide perspective
- CO2-to-solution ~ CO2-per-hour iff
 - Utilization → 0%Idle power = 0

EcoFreq: Evaluation

Linear policy, no HW/SW profiling, no forecast

EcoFreq: Demo

```
$ sudo ./ecofreq.py
#Timestamp
                         aCO2/kWh
                                       CPU Pmax [W]
                                                       GPU Pmax [W]
                                                                       SYS Pavg [W]
                                                                                       Energy [J]
                                                                                                          CO2 [q]
                              380
                                            223.000
2021-06-11T23:14:18
                                                                 NA
                                                                            398.650
                                                                                       358785.000
                                                                                                           37.874
2021-06-12T09:44:48
                              262
                                            275.750
                                                                 NA
                                                                            529.639
                                                                                       476675.000
                                                                                                           34.632
2021-06-12T13:44:59
                                                                            594.097
                                                                                       534687.500
                              133
                                            330,000
                                                                 NA
                                                                                                           19.778
```

```
$ ./ecostat.pv
EcoStat v0.0.1
Loading data from log file: /var/log/ecofreg.log
Time interval:
                             2021-05-18 - 2021-06-11
Duration active:
                             23 days, 23:15:57
Duration inactive:
                             17:06:18
CO2 intensity range [g/kWh]: 108 - 449
CO2 intensity mean [g/kWh]: 284
Energy consumed [J]:
                             657629645.0
Energy consumed [kWh]:
                             182.675
CO2 emitted [kg]:
                             51.701283
```

```
$ ./ecorun.py -p linear raxml-ng
[...]

time_s: 882.708
pwr_avg_w: 553.422
energy_j: 488510.0
energy_kwh: 0.136
co2_g: 51.112
```

Next steps

- Hardware- and workload-aware policies
- SLURM plugin
- Evaluation on a larger system → GSI?

Discussion