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SUMMARY

Inference of phylogenetic (evolutionary) trees comprising hundreds or thousands of
organisms based on the maximum likelihood criterion is a computationally extremely
intensive task. This paper describes the evolution of the AxML program family which
provides novel algorithmic as well as technical solutions for the maximum likelihood-
based inference of huge phylogenetic trees. Algorithmic optimizations and a new
tree building algorithm yield run time improvements of a factor > 4 compared to
fastDNAml and parallel fastDNAml returning equally good trees at the same time.
Various parallel, distributed, and grid-based implementations of AxML provide the
program the capability to acquire the large amount of required computational resources
for the inference of huge high quality trees.
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1. INTRODUCTION

In recent years there has been an astonishing accumulation of genetic information for many
different organisms. This information can be used to infer evolutionary relationships (called a
phylogenetic tree or phylogeny) among a collection of species or even closely related subspecies.
There are a variety of techniques that are used to compute these relationships, including the
use of maximum likelihood. A recent result by Korber et al. that times the evolution of the
HIV-1 virus [9] demonstrates that maximum likelihood techniques can be effective in solving
biological problems.

Maximum likelihood approaches start with a collection of taxa and a (binary) tree
representing possible relationships. Each taxa is represented by a nucleotide or amino acid
sequence denoted by characters. The sequences from the individual taxa are aligned and then
on a column-by-column basis under certain evolutionary assumptions the likelihood of each
column is computed. The overall likelihood is a function of all the column likelihoods. Typically,
maximum likelihood programs generate a variety of trees to determine the most likely tree as
well as other good trees that are not statistically significantly different from the most likely
tree. Because of computational requirements of likelihood analysis and the large number of
possible trees, relatively few trees are ever considered by maximum likelihood approaches,
especially for large numbers of taxa.

Some earlier work in this area of genome analysis focused on finding perfect phylogenies.
Kannan and Warnow have a polynomial time algorithm for finding perfect phylogenies [8]
under certain reasonable restrictions. However, like many problems associated with genome
analysis, the general version of the perfect phylogeny problem is NP-complete [1]. Perfect
phylogenies require that for each character in each column, the taxa containing that character
in that column form a subtree of the phylogeny. While maximum likelihood methods do not
strive to meet this requirement (and regularly produce highly likely, yet “imperfect” trees), it
is widely believed that computing phylogenies that meet any sort of effective criteria is NP-
hard. Thus, the introduction of heuristics for reducing the search space in terms of potential
tree topologies evaluated becomes inevitable. Heuristics for phylogenetic tree calculations still
remain computationally expensive, mainly due to the high cost of the tree likelihood function,
which is invoked repeatedly for each tree topology analyzed.

Thus, only relatively small trees of high quality (150 [21], 228 [2] taxa), have been calculated
so far, although large data sets containing potential phylogenetic information are available
(e.g. approximately 30000 sequences in the ARB [11] ssu rRNA database).

Therefore, technical solutions for obtaining the required amount of computational resources
as well as algorithmic solutions for improving heuristics and accelerating the evaluation of the
likelihood function are required.

In this article we present the algorithmic and technical evolution of the AxML (Axelerated
Maximum Likelihood) program family (see Figure 1) with emphasis on algorithmic results.
The AxML program family has been derived from fastDNAml [12] and parallel
fast DN Aml [21] [22] respectively.

In Section 2 we describe algorithmic optimizations of the topology evaluation function based
on Subtree Equality Vectors (SEVs) [16] [17] and the design of a new partially randomized
algorithm [19] which further accelerates the tree building process. In Section 3 we briefly
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Figure 1. Evolutionary tree of the AxML program family; dotted lines indicate technical evolution,
straight lines indicate algorithmic evolution
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outline some Grid- and CORBA-based [20] technical solutions for AXML. Finally, we briefly
summarize the most important results and mention aspects of current and future work.

1.1. Related work

For reducing the size of the search space heuristics, such as e.g. the stepwise addition algorithm
(introduced in [5], modified in [12]), the advanced stepwise addition algorithm [27] or quartet
puzzling [23], are required for the tree building process.

Quartet puzzling yields trees of comparable quality but is slower than stepwise addition and
thus not well suited for reconstruction of big trees. One of the main shortfalls of the stepwise
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addition algorithm as implemented in fast DINAml and initial versions of AxML is that
the final tree strongly depends on the input order of sequences. Thus, it is recommended to
run the program several times with different randomized sequence input order permutations
(jumbling) at high rearrangement levels for obtaining reliable results. Tree rearrangements
are applied to further improve the likelihood of trees by moving all subtrees by a predefined
distance (rearrangement level) within the tree. This practice has been applied to the 150
taxa data set (originally used by W. Fischer in biological research about Microsporidia)
for conducting performance and scalability tests presented in [21]. However, this practice
becomes prohibitive for large trees (> 200 sequences) even for parallel implementations of
the above programs on supercomputers since thorough rearrangements and an augmentation
in the number of taxa and jumbles leads to an increase in run time by orders of magnitude.
Parallel implementations are available for the following sequential programs: DN Am] [3],
fast DN Aml [2]], treepuzzle [24].

As alternative to the above approaches sequential and parallel implementations of genetic
algorithms for maximum likelihood-based phylogenetic tree inference have been proposed
e.g. in [2] [15].

However, no comparative analysis between “traditional” and “genetic” parallel programs for
maximum likelihood phylogenetic inference has been carried out so far, such that it is difficult
to assess the capabilities of genetic approaches.

2. ALGORITHMIC SOLUTIONS

This section describes the algorithmic enhancements of AxML, which have been implemented
in fastDNAml and parallel fastDNNAml respectively. It describes the exhaustive
algorithmic optimizations of the likelihood function of fastDNAml and a novel partially
randomized tree building algorithm implemented in a program called RAxML.

2.1. Subtree column equalities (AxML)

In general the cost of the likelihood function and the branch length optimization function,
which accounts for the greatest portion of execution time (95% in the sequential version of
fast DN Aml), can be reduced in two ways:

Firstly, by reducing the size of the search space using some additional heuristics, i.e. reducing
the number of topologies evaluated and thus reducing the number of likelihood function
invocations. This approach might, however, overlook high quality trees.

Secondly, by reducing the number of sequence positions taken into account during
computation and thus reducing the number of computations at each inner node during each
tree’s evaluation.

We consider the second possibility through a detailed analysis of column equalities. Two
columns in an alignment are equal and belong to the same column class if, on a sequence
by sequence basis, the base is the same. A homogeneous column consists of the same base,
whereas a heterogeneous column consists of different bases.
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More formally, let sy, ..., s, be the set of aligned input sequences. Let m be the number of
sequence positions of the alignment. We say that two columns of the input data set ¢ and j
are equal if Vsp, k = 1,...,n : sy; = s;, where s; is the j-th position of sequence k. One can
now calculate the number of equivalent columns for each column class of the input data set.

After calculating column classes, one can compress the input data set by keeping a single
representative column for each column class, removing the equivalent columns of the specific
class and assigning a count of the number of columns the selected column represents.

Since a necessary prerequisite for a phylogenetic tree calculation is a high-quality multiple
alignment of the input sequences, one might expect quite a large number of column equalities
on a global level. In fact, this kind of global data compression is already performed by most
programs. Unfortunately, as the number of aligned sequences grows, the probability of finding
two globally equal columns decreases. However, it is reasonable to expect more equalities on
the subtree or local level.

The fundamental idea of this paper is to extend this compression mechanism to the subtree
level, since a large number of column equalities might be expected on the subtree level.
Depending on the size of the subtree, fewer sequences have to be compared for column equality
and thus, the probability of finding equal columns is higher.

None the less, we restrain the analysis of subtree column equality to homogeneous columns
for the following reason:

The calculation of heterogeneous equality vectors at an inner node p is complex and requires
the search for c¢* different column equality classes, where k is the number of tips (sequences) in
the subtree of p and c is the number of distinct values the characters of the sequence alignment
are mapped to (e.g. fast DN Aml uses 15 different values). This overhead would not amortize
well over the additional column equalities we would obtain, especially when ¢* > m/.

We now describe an efficient and easy way for recursively calculating subtree column
equalities using Subtree Equality Vectors (SEVs).

Let s be the virtual root placed in an unrooted tree for the calculation of its likelihood value.
Let p be the root of a subtree with children ¢ and r, relative to s. Let ev_p (ev_q, ev_r) be the
equality vector of p (g, r, respectively), with size m', where m/' is the length of the compressed
global sequences. The value of the equality vector for node p at position i, where i = 1,...,m/
can be calculated by the following function:

evpli) = { evq(i) if evgq(i)=evr(i) 1)

-1 else

If p is a leaf, we set ev_p(i) := map(sequence_p(i)), where, map() is a function that maps the
character representation of the aligned input sequence sequence_p at leaf p to values 0,1, ..., c.
Thus, the values of an inner SEV ev_p, at position ¢, range from —1,0, ..., ¢, i.e. —1 if column
i is heterogeneous and from 0,...,c in the case of an homogeneous column. For SEV values
0,...,c a pointer array ref_p(c) is maintained, which is initialized with NULL pointers, for
storing the references to the first occurrence of the respective column equality class in the
likelihood vector of the current node p.

Thus, if the value of the equality vector ev_p(j) > —1 and ref_p(ev_p(j)) # NULL for an
index j of the likelihood vector lv_p(j) of p, the value for the specific homogeneous column
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equality class ev_p(j) has already been calculated for an index ¢ < j and a large block of
floating point operations can be replaced by a simple value assignment lv_p(j) := lv_p(i). If
evp(j) > —1 and ref p(ev_p(j)) = NULL, we assign ref_p(ev_p(j)) to the address of lv_p(j),
i.e. ref_p(ev_p(j)) := adr(lv_p(j)).

The additional memory required for equality vectors is O(n * m'). The additional time
required for calculating the equality vectors is O(m') at every node.

The initial approach induces a reduction in the number of floating point operations between
23% and 26% in the specific function.

It is important to note that the initial optimization is only applicable to the likelihood
evaluation function, and mot to the branch length optimization function. This limitation is
due to the fact that the SEV calculated for the wirtual root placed into the topology under
evaluation, at either end of the branch being optimized, is very sparse, i.e. has few entries
> —1. Therefore, the additional overhead induced by SEV calculation does not amortize well
with the relatively small reduction in the number of floating point operations (2% - 7%). Note
however, that the SEVs of the real nodes at either end of the specific branch do not need to
be sparse, this depends on the number of tips in the respective subtrees.

We now show how to efficiently exploit the information provided by an SEV in order to
achieve an additional reduction in the number of floating point operations by extending this
mechanism to the branch length optimization function.

In order to make better use of the information provided by an SEV at an inner node p with
children r and g, it is sufficient to analyze at a high level how a single entry 4 of the likelihood
vector at p, lv_p(i) is calculated:

lvp(i) = f(g(lv-g(i), 2(p, q)), g(lvr (i), 2(p, 7)) (2)

where z(p,q) (2(p,r)) is the length of the branch from p to ¢ (p to r respectively). Function
g() is a computationally expensive function that calculates the likelihood of the left and the
right branch of p respectively, depending on the branch lengths and the values of lv_q(i) and
lv_r(i), whereas f() performs some simple arithmetic operations for combining the results of
g(lvq(?), z(p, q)) and g(lvr(i),z(p,r)) into the value of lv_p(i). Note that z(p,q) and z(p,r)
do not change with 3.

If we have ev_q(i) > —1 and ev_gq(i) = evq(j), i < j, we have lv_g(i) = lvg(j) and
therefore g(lv_q(i), z2(p,q)) = g(lv-q(j), 2(p,q)) (the same equality holds for node r). Thus,
for any node ¢ we can avoid the recalculation of g(lv_g(i),z(p,q)) for all j > i, where
ev_q(j) = ev_q(i) > —1. We precalculate those values and store them in arrays precalc_g(c) and
precalc_r(c) respectively, where ¢ is the number of distinct character-value mappings found in
the sequence alignment.

Our final optimization consists in the elimination of value assignments of type lv_q(i) :=
lv_q(j), for ev_q(i) = ev_q(j) > —1, i < j where ¢ is the first entry for a specific homogeneous
equality class ev_g(i) = 0,...,c in ev.gq. We need not assign those values due to the fact
that lv_q(j) will never be accessed. Instead, since ev_q(j) = ev_q(i) > —1 and the value
of g-q(j) = g-q(i) has been precalculated and stored in precalc_q(ev_p(i)), we access lv_q(i)
through its reference in ref_g(ev_q(7)).

During the main for-loop in the calculation of lv_p we have to consider 6 cases, depending
on the values of ev_g and ev_r. For simplicity we will write p_q(¢) instead of precalc_g(i) and
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9-q(i) instead of g(lv-q(i), 2(p, 9))-

( f(p-a(ev-q(i)), p-r(evr(7)))
if ev_q(i) = evr(i) > =1,ref_p(ev_r(i)) = NULL

skip
if ev_q(i) = evr(i) > =1,ref_p(ev_r(i)) # NULL

f(p-g(evq(i)), pr(evr(i)))

if ev_q(i) # ev_r(i),ev_q(i),evr(i) > —1

lv_p(i) := < 3)
f(p-g(ev-q(i)), g-r(i))

if ev_g(i) > —1,evr(i) = —1

f(9-4(i), pr(evr(i)))
if ev_r(i) > —1,evq(i) = —1

f(9-4(i), g-r (7))
if ev_g(i) = —1,evr(i) = —1

\

For a more thorough description of SEVs see [16].
2.2. Additional SEV-based optimization (AxML2.5)

Since the initial implementation of SEVs proved to work particularly well on PC processor
architectures, we investigated additional algorithmic optimizations especially designed for these
architectures. An additional acceleration can be achieved by a more thorough exploitation of
SEV information in function makenewz(), which optimizes the length of a specific branch
b and accounts for approximately one third of total execution time. Function makenewz()
consists of two main parts: Initially, a for-loop over all alignment positions is executed for
computing the likelihood vector of the virtual root s placed into branch b connecting nodes p
and gq. Thereafter, a do-loop is executed which iteratively alters the branch length according
to a convergence criterion. For calculating the new likelihood value of the tree for the altered
branch length within that do-loop, an inner for-loop over the likelihood vector of the virtual
root s which uses the data computed by the initial for-loop is executed.

A detailed analysis of makenewz () reveals two points for further optimization:

Firstly, the do-loop for optimizing branch lengths is rarely executed more than once (see
Table I). Furthermore, the inner for-loop accesses the data computed by the initial for-loop.
Therefore, we integrated the computations performed by the first execution of the inner for-
loop into the initial for-loop and appended the conditional statement which terminates the
iterative optimization process to the initial for-loop, such as to avoid the computation of the
first inner for-loop completely.

Secondly, when more than one iteration is required for optimizing the branch length in the
do-loop we can reduce the length of the inner for-loop by using SEVs. The length of the inner
for-loop f = m' can be reduced by nn — ¢ the number of non-negative entries nn of the SEV
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Table I. makenewz() analysis

# sequences | # makenewz() | # invocations with | average number of iterations
invocations ## iterations > 1 if iterations > 1
10 1629 132 7.23
20 8571 661 6.14
30 21171 1584 6.17
40 39654 2909 6.21
50 63112 4637 6.26

at the virtual root s minus the number ¢ of distinct column equality classes, since we need to
calculate only one representative entry for each column equality class. Note that the weight
of the column equality class representative is the accumulated weight of all column equalities
of the specific class at s. Thus, the reduced length f’ of the inner for-loop is obtained by
ff=m'—nn+ec

We obtain the SEV ev_s of the virtual root s by applying:

) [ evpli) if  evp(i) = evgli)
ev_s(i) := { 1 olse (4)

Since the branch length optimization process requires a sufficiently large average number
of iterations to converge if it does not converge after the first iteration (see Table I) our
optimization scales well despite the fact that the SEV at the virtual root s is relatively sparse,
i.e. nn — ¢ is relatively small compared to m'.

2.3. A new tree building algorithm (RAxML)

Several experimental approaches we evaluated and described in [19] for further accelerating
the topology evaluation function of AxML did not lead to further significant run time
improvements. This is due to the fact that the acceleration potential of the SEV method
has been exhausted. Thus, we focus on changing the search space strategy, i.e. replacing the
stepwise addition algorithm which AxML inherited from fast DN Aml, by faster but equally
good (in terms of attained final likelihood values) heuristics. Our new search space heuristics
use a randomized approach to handle the impact of sequence input order permutations
(jumbling see Section 1.1) and exploit the relationship between parsimony and maximum
likelihood methods/scores [4][26]. Furthermore, we make use of consensus tree methods [7]
which often improve the likelihoods of intermediate trees (see step 2) and provide valuable
information for further tree refinements, which are subject of future work. Currently, our
algorithm consists of three main computational steps:

1. A large number of initial trees ¢t for a specified number perm of randomized sequence
input order permutations is inferred with the parsimony program dnapars from
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PHYLIP [14], which is based on a similar stepwise addition algorithm as fast DN Aml.
The likelihood values of all final parsimony trees are calculated and the topologies are
stored in an ordered tree list otl, of length ¢.

2. A majority rule consensus tree is built for all ordered fractions of otl, i.e. for the 2,3, ..., ¢
best trees of the list. The likelihood of each consensus tree is evaluated and inserted into
otl.

3. Extensive local and global rearrangements are applied to the best tree of otl, using ezactly
the same algorithm as fast DN Aml.

Our experiments showed, that a good setting for perm is twice the number of sequences n,
i.e. perm = 2n. Note, that t > perm, since dnapars might yield a set of equally parsimonious
trees for one single input order permutation. Among a general reduction of computation time,
the algorithm yields an initial final tree containing all taxa much earlier during the inference
process than fast DN Aml.

3. TECHNICAL SOLUTIONS

This section describes various technical enhancements of the basic PAXML and RAxML
codes which have been implemented to provide the means for obtaining the required amount
of computational resources for the inference of large phylogenetic trees. We also focus on
technical solutions which do not require expensive supercomputers and are able to exploit
unused resources in workstation clusters.

3.1. Technical solutions for AxML
3.1.1. Parallel AzML

PAxML is the parallel MPI-based implementation of AxML which has been designed by
integrating the SEV-based tree evaluation function of AxML into parallel fastDNAml.
The rest of the code has remained unchanged, such that scalability and speedup are identical
to parallel fast DN Aml.

3.1.2. Distributed AxML

Distributed AxML is a CORBA-based implementation of PAXxML. It uses LMC (Load
Managed CORBA [10]), which provides automatic initial object placement, migration
and replication in distributed heterogeneous environments. In DAxML a worker object
corresponds to an MPI worker process in PAxML and can be easily migrated or replicated
since it only provides the topology evaluation function as service and does not hold a state.
The distributed programming paradigm can be applied to phylogenetic tree inference, since the
program passes most of its time evaluating topologies and does not communicate frequently.
See [20] for a more detailed description of DAXML.
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3.1.8. Grid AzML

Unlike traditional supercomputer applications, such as numerical simulations, PAXML can be
quickly interrupted, checkpointed and restarted, since its state consists only of the currently
best tree and information about the current phase of the computation. Thus, given the
large amount of still unresolved problems in Grid computing such as e.g. the co-scheduling
problem, we decided to implement a migrating Grid application. Based on the integration
of the CACTUS [25] migration toolkit, GAXML is able to migrate through the Grid to
supercomputers with free capacities. A monitoring tool for determining the best migration site
is however not available yet, but this task is situated on the CACTUS-side of the application.

3.2. Technical solutions for RAxML
3.2.1. MPI-RAxML

MPI-RAxXML is a straight-forward MPI implementation of the randomized algorithm described
in Section 2.3.

It uses a master-worker architecture, where the master distributes the work of phases 1
through 3 and maintains the best tree list. The master controls the number of randomized
input order permutations, collects respective results, and assigns fractions of the best tree list
to the workers for consensus tree inference. Finally the master process generates and distributes
rearranged tree topologies to the workers. In contrast to parallel fastDINAml however we
enhanced the master with the capability to send an arbitrary number of tree topologies for
evaluation to a worker instead of only one. This modification proved to be particularly useful
for the design of the distributed version RAxML@home described in the subsequent section.

3.2.2. RAzML@home

Apart from the improvements in required run time induced by RAxML the algorithm has also
been designed to fit the distributed programming paradigm. Thus, transformation of the MPI-
RAXxML code was particularly easy: MPI calls simply had to be replaced by the respective
http-based routines from the library we have developed. The http communication library
enables distributed workers to pass their messages through proxies in LANs. This library is
also freely available as open source program and can be used as general purpose library for
building distributed phylogenetic tree programs.

In contrast to MPI-RAXML, the master process of RAxML@home loops over a work
queue which is manipulated by a dedicated interface thread.

RAxML@home already incorporates redundancy and log-file mechanisms to handle
master and/or worker failures

In Figure 2 we outline a simplified program flow of MPI-RAXxML (straight lines) and
RAxML@home (dotted lines).

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls



THE AXML PROGRAM FAMILY

11

Distribute

work

Minimum number
of trees & permutations
computed ?

Distribute tree list

Worker
%
Random work request Generate random
permutation

Tree topologies &
likelihoods

Build trees with
parsimony

Evaluate trees with
maximum likelihood

Consensus work

fractions

¢ tree
N Consensus \L
All fractions tree & likelihood Evaluate consensus
calculated ?

Compoute consensus

tree

Tree topology

| Evaluatetopology |

Tree & likelihood

[Finish |

| Terminate Worker |

Figure 2. Outline of a simplified parallel and distributed program flow of

4. RESULTS

4.1. Test data & platforms

RAxML

For testing our program we extracted alignments comprising 150, 200, 250, 500 and 1000
taxa (150_ARB,...,1000_.ARB) from the ARB [11] small subunit ribosomal ribonucleic acid
(ssu rRNA) database. Those alignments contain organisms from the three kingdoms Eucarya,
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Table II. Total Amount of CPU hours and final In likelihoods for PAxML and RAxML
Data CPU hrs In Lh J R || CPU hrs In Lh # trees acc
PAxML RAxML

150_SC 1635.66 -44146.90 | 10 || 5 64.29 -44145.98 500 25.44
150_ARB 300.40 -77189.78 1 5 106.14 -77189.69 500 2.83
200_ARB 774.56 -104743.33 | 1 5 287.57 -104743.32 500 2.69
250_ARB 1947.18 -131468.97 1 5 481.46 -131475.52 500 4.04
500-ARB 7371.79 | -252588.67 | 1 3 || 2313.8766 | -252617.52 500 3.19
1000_.ARB 9898.05 | -402282.08 | 1 1 1070.59 -401501.57 3837 9.23

Bacteria and Archaea. In addition, we used the 150 sequence data set (150_SC) from [21] which
can be downloaded at [13].

All recent parallel tests with RAxML have been conducted on the HELICS [6] 512 processor
Linux Cluster using 64 up to 200 processors for the largest alignments.

For testing the prototype of RAXML@home and DAXML we used various workstations
at the Lehrstuhl fiir Rechnertechnik und Rechnerorganisation.

4.2. Algorithmic results

The run time accelerations over (parallel) fastDINAml achieved by (P)AxML on various
PC processor architectures and clusters (AMD Athlon 1.4Ghz, AMD Athlon 1.6Ghz, Intel
Pentium IV, Intel Xeon 2.2Ghz) exceeded 50% (max. = 64%) for all alignments mentioned
above and yielded ezactly identical results [16] [17].

The run time accelerations recorded for MPI-RAxML over PAXxML are listed in Table II.
We list the total amount of CPU hours for each run, the final likelihood value (In Lh) as
well as the rearrangement (R) setting and the number of jumbles (J). The number of CPU
hours required for the 150_SC data set is particularly large since we summed up the CPU
hours of the 10 jumbled runs we conducted as specified at [13]. For RAXML we also list
the number of randomized sequence input order trees (# trees) calculated during phase 1 of
the algorithm. It is important to note that the results for the 150,...,500 sequence data sets
have been attained with an older version of RAxML which uses standard stepwise addition
without rearrangements instead of parsimony to calculate initial trees. The most important
result, both in terms of run time improvement and final tree likelihood has been recorded for
the 1000_ARB alignment which has been inferred with the algorithm described in Section 2.3.

The main challenge for further optimization of RAxML consists in the improvement of the
rearrangement process since it requires approximately 80% to 90% of the total computation
time.

Copyright © 2003 John Wiley & Sons, Ltd.
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Figure 3. Impact of 3 subsequent automatic worker object replications

4.3. Some technical results

We limit the description of technical results to two examples.

The prototype of RAxML®@home is installed and being tested on 14 processors (SOLARIS:
7 x various UltraSPARC-II and UltraSPARC-III. LINUX: 7 x various Pentium II, IIT, IV) at
the Lehrstuhl fiir Rechnertechnik und Rechnerorganisation. We conducted some first successful
test runs, performing however a less thorough search than for the big test runs listed in Table II.
For the 150_ARB alignment we obtained a final tree with an In likelihood of -77193.74 within
approximately 12 hours. This is a promising result, since it indicates that the new distributed
algorithm enables the inference of medium-sized phylogenetic trees on a comparatively small
number of workstations within reasonable time.

In Figure 3 we depict the average evaluation time per topology classes 1,...,40 for two test
runs with DAXML in the heterogeneous environment of our laboratory. A topology class is
the set of all topologies of equal size, which are evaluated during a single step of the stepwise
addition algorithm. We conducted one test run with automatic servant object replication
enabled and another one with replication disabled.

Figure 3 shows how the average evaluation time per topology class is progressively improved
by 3 subsequent automatic worker object replications (marked by arrows) performed by LMC.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
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5. Availability, current & future work

The most recent versions of AxML and PAxML are available for download at
wwwbode.in.tum.de/ stamatak/research.html. The prototype of RAxML@home is
developed and available at www.sourceforge.com/projects/axml.

Currently, we are working on the direct implementation of a parsimony score function
in RAxML and on the integration and assessment of a parsimony-based preevaluation of
topologies for the rearrangement phase.

Future work will cover improvements of the rearrangement phase based on information
provided by the consensus phase of RAxML. This phase yields information about “strong
subtrees”, i.e. trees which appear in all trees of phase 1 and thus require only local optimization.

Finally, we will make an effort to port RAxML@home to Windows and enhance it with
some fancy screen saver in order to augment the attractiveness of participation for contributors
outside the academic sphere.
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