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ABSTRACT
Motivation: The computation of large phylogenetic trees with
statistical models such as maximum likelihood or bayesian
inference is computationally extremely intensive. It has
repeatedly been demonstrated that these models are able to
recover the true tree or a tree which is topologically closer to
the true tree more frequently than less elaborate methods such
as parsimony or neighbor joining. Due to the combinatorial and
computational complexity the size of trees which can be com-
puted on a Biologist’s PC workstation within reasonable time
is limited to trees containing approximately 100 taxa.
Results: In this paper we present the latest release of our
program RAxML-III for rapid maximum likelihood-based infer-
ence of large evolutionary trees which allows for computation
of 1.000-taxon trees in less than 24 hours on a single PC
processor. We compare RAxML-III to the currently fastest
implementations for maximum likelihood and bayesian infer-
ence: PHYML and MrBayes. Whereas RAxML-III performs
worse than PHYML and MrBayes on synthetic data it clearly
outperforms both programs on all real data alignments used
in terms of speed and final likelihood values.
Availability Supplementary information: RAxML-III includ-
ing all alignments and final trees mentioned in this paper is
freely available as open source code at http://wwwbode.cs.
tum/∼stamatak
Contact: stamatak@cs.tum.edu

INTRODUCTION
In recent years there has been an astonishing accumulation
of genetic information for many different organisms. This
information can be used to infer evolutionary relationships
(called a phylogenetic tree or phylogeny) among a collection
of species. There are a variety of techniques that are used
to compute these relationships, including the use of max-
imum likelihood (Felsenstein, 1981) which among bayesian
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methods is considered to represent one of the currently most
accurate models. A useful review of traditional and bayesian
approaches is available from Holder and Lewis (2003). Unfor-
tunately, the number of possible tree topologies grows expo-
nentially with the number of taxa and the computational cost of
the likelihood function itself is high. Thus, the introduction of
heuristics to reduce the search space in terms of potential tree
topologies evaluated becomes inevitable for the computation
of trees containing more than 15 to 20 organisms. However,
heuristics for maximum likelihood-based phylogenetic tree
calculations still remain computationally intensive, mainly
due to the high cost of the likelihood function, which is
invoked repeatedly for each analyzed tree topology.

Thus, to date only relatively small maximum likelihood-
based trees could be computed on parallel computers: a
150-taxon tree with parallel fastDNAml (Stewart et al., 2001),
and a 228-taxon tree using a parallel genetic algorithm (Brauer
et al., 2002). However, large data alignments containing valu-
able phylogenetic information are available for example in
the ARB (Ludwig et al., 2004) ssu rRNA (small subunit
ribosomal RiboNucleic Acid) database which presently con-
tains more than 30.000 sequences. Recently, a GRID-enabled
version of fastDNAml has been used on a large alignment
to compete in the High Performance Computing Challenge
at Supercomputing 2003 conference (see http://www.
sc-conference.org/sc2003/tech_hpc.php for details). We have
however not been able to obtain the alignment or information
about the size of the analysis.

In previous work (Stamatakis et al., 2002) we have intro-
duced Subtree Equality Vectors (SEVs) to significantly
accelerate the topology evaluation function of maximum
likelihood-based phylogeny programs. We implemented
SEVs in PAxML (Parallel A(x)ccelerated Maximum Likeli-
hood), which was derived from parallel fastDNAml (Stewart
et al., 2001). PAxML shows run time improvements of
approximately 25% to 65% compared to parallel fastDNAml
and yields exactly identical results at the same time.
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PAxML shows best accelerations for large alignments (≥150
sequences) on inexpensive PC processor architectures.

One main goal of current work on RAxML-III (Randomized
A(x)ccelerated Maximum Likelihood) is to obtain equally
good or better likelihood values than PAxML and com-
parable state-of-the-art sequential programs in less time by
deployment of improved search space heuristics. Another key
objective is to enhance RAxML-III by a greater variety of
evolutionary models and maximum likelihood-based estima-
tion of model parameters. Finally, the RAxML-III algorithm is
designed to allow for the implementation of relatively coarse-
grained distributed and parallel (Stamatakis et al., 2004b)
versions which do not rely on expensive hardware platforms.
The parallel implementation of the preceding program version
(RAxML-II) has been used to infer a 10.000-taxon phylogeny
on a medium size PC cluster (Stamatakis et al., 2004b).

RELATED WORK
A recent comparative survey (Williams and Moret, 2003)
covers an important range of widely-used state-of-the-art
statistical phylogeny programs such as fastDNAml (Olsen
et al., 1994), MrBayes (Huelsenbeck and Ronquist, 2001),
PAUP* (Swofford, 1999), and treepuzzle (Strimmer and
Haeseler, 1996). The most important result of this paper is that
MrBayes outperforms all other analyzed phylogeny programs
in terms of speed and tree quality. MrBayes is a program for
bayesian analysis of phylogenetic trees. However, this survey
is entirely based on synthetic (simulated) data. As the results
of this paper show additional experiments with real data can
lead to distinct conclusions and a more differentiated image.
Furthermore, the largest alignments of this survey contained
only 60 sequences. Thus, the results do not necessarily apply
to inference of large trees based on real data sets. In addition,
this survey does not cover genetic algorithms (Lewis, 1998)
which generally converge faster than MrBayes (Guindon and
Gascuel, 2003).

More recently, Guindon and Gascuel (2003) published a
paper about their new program PHYML, which is very fast
and outperforms other recent approaches including MrBayes
and genetic algorithms such as MetaPIGA (Lemmon and
Milinkovitch, 2002) which -to the best of our knowledge-
currently represents the most efficient genetic algorithm for
phylogenetic analysis. Like RAxML-III, PHYML is a ‘tra-
ditional’ maximum likelihood program which seeks to find
the optimal topology in respect to the likelihood value and is
also capable of optimizing model parameters. The PHYML
publication includes a comparative survey based on two large
real world data sets comprising 218 and 500 taxa, as well as
on 50 synthetic 100-taxon alignments.

Thus, -to the best of our knowledge- MrBayes and PHYML
are currently the fastest and most accurate representatives
of bayesian and ‘traditional’ approaches to phylogenetic tree
inference using statistical models of nucleotide substitution.

Therefore, the focus is on those two programs for assess-
ing performance of RAxML-III within the context of this
paper. Comparative surveys which assess performance of
PHYML, MrBayes, and other common phylogeny programs
can be found in the aforementioned survey (Williams and
Moret, 2003) and paper about PHYML (Guindon and Gascuel,
2003).

ALGORITHM
The heuristics of RAxML-III belong to the class of
algorithms, which optimize the likelihood of a start-
ing tree already comprising all sequences. In contrast to
other programs RAxML-III starts by building an initial
parsimony tree with dnapars from Felsenstein’s PHYLIP
package (http://evolution.genetics.washington.edu) for two
reasons:

Firstly, parsimony is related to maximum likelihood under
simple evolutionary models (Tuffley and Steel, 1997), such
that one can expect to obtain a starting tree with a relatively
good likelihood value compared to random or neighbor join-
ing starting trees. For example the 500_ZILLA parsimony
starting tree showed a better likelihood than the final tree of
PHYML (see Table 3).

Secondly, dnapars uses stepwise addition (Felsenstein,
1981) for tree building and is relatively fast. The stepwise
addition algorithm enables the construction of distinct start-
ing trees by using a randomized input sequence order. Thus,
RAxML-III can be executed several times with different start-
ing trees and thereby compute a set of distinct final trees. The
set of final trees can be used to build a consensus tree and
augment confidence into the final result since RAxML-III
explores the search space from different starting points. To
speed up computations, some optimization steps have been
removed from dnapars.

The tree optimization process represents the second and
most important part of the heuristics. RAxML-III performs
standard subtree rearrangements by subsequently remov-
ing all possible subtrees from the currently best tree tbest

and re-inserting them into neighboring branches up to a
specified distance of nodes. RAxML-III inherited this optim-
ization strategy from fastDNAml. One rearrangement step in
fastDNAml consists of moving all subtrees within the cur-
rently best tree by the minimum up to the maximum distance
of nodes specified (lower/upper rearrangement setting). This
process is outlined for a single subtree (ST5) and a distance
of 1 in Figure 1 and for a distance of 2 in Figure 2 (not
all possible moves are shown). In fastDNAml the likelihood
of each thereby generated topology is evaluated by exhaust-
ive branch length optimizations. If one of those alternative
topologies improves the likelihood tbest is updated accord-
ingly and once again all possible subtrees are rearranged
within tbest. This process of rearrangement steps is repeated
until no better topology is found.
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Fig. 1. Rearrangements traversing one node for subtree ST5,
branches which are optimized by RAxML-III are indicated by bold
lines.

Fig. 2. Example rearrangements traversing two nodes for subtree
ST5, branches which are optimized by RAxML-III are indicated by
bold lines.

The rearrangement process of RAxML-III differs in two
major points: In fastDNAml after each insertion of a subtree
into an alternative branch the branch lengths of the entire
tree are optimized. As depicted in Figure 1 with bold lines
RAxML-III only optimizes the three local branches adjacent
to the insertion point either analytically or by the Newton-
Raphson method before computing its likelihood value. Since
the likelihood of the tree strongly depends on the topology per
se this fast pre-scoring can be used to establish a small list of
potential alternative trees which are very likely to improve the
score of tbest. RAxML-III uses a list of size 20 to store the best
20 trees obtained during one rearrangement step. This list size
proves to be a practical value in terms of speed and thorough-
ness of the search. After completion of one rearrangement step
the algorithm performs global branch length optimizations on
those 20 best topologies only. Due to the capability to analyze

Fig. 3. Example for subsequent application of topological improve-
ments during one rearrangement step.

significantly more alternative and diverse topologies in less
time a higher upper rearrangements setting can be used e.g. 5
or 10 which results in significantly improved final trees.

Another important change especially for the initial optim-
ization phase, i.e. the first 3-4 rearrangement steps, consists
in the subsequent application of topological improvements
during one rearrangement step. If during the insertion of one
specific subtree into an alternative branch a topology with
a better likelihood is encountered this tree is kept immedi-
ately and all subsequent subtree rearrangements of the current
step are performed on the improved topology. The mech-
anism is outlined in Figure 3 for a subsequent application
of topological improvements via subtree rearrangements of
ST5 and ST3 on the same initial tree. This enables rapid ini-
tial optimization of random starting trees as depicted e.g. for
two alignments containing 150 taxa in Figures 6 and 7. The
exact implementation of the RAxML-III algorithm is indic-
ated in the C-like pseudocode below. The algorithm is passed
the user/parsimony starting tree t, the initial rearrangement
setting rStart (default: 5) and the maximum rearrange-
ment setting rMax (default: 21). Initially the rearrangement
stepwidth ranges from rL = 1 to rU = rStart. Fast
analytical local branch length optimization a is turned off
when functions rearr(...), which actually performs the
rearrangements, and ptimizeList20() fail to yield an
improved tree for the first time. As long as the tree does
not improve the lower and upper rearrangement parameters
rL, rU are incremented by rStart. The program termin-
ates when the upper rearrangement setting is greater or equal
to the maximum rearrangement setting, i.e. rU >= rMax.

RAxML-III(tree t, int rStart, int rMax)
{
int rL, rU;
boolean a = TRUE;
boolean impr = TRUE;
while(TRUE)
{
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if(impr)
{
rL = 1;
rU = rStart;
rearr(t, rL, rU, a);

}
else
{
if(!a)
{
a = FALSE;
rL = 1;
rU = rStart;

}
else
{
rL += rStart;
rU += rStart;

}
if(rU < rMax)
rearr(t, rL, rU, a);

else
goto end;

}
impr = optimizeList20();

}
end:

}

RESULTS

Test data and platforms
For conducting experiments alignments comprising 150, 200,
250, 500, 1.000, and 2.025 taxa (150_ARB, . . . , 2025_ARB)
have been extracted from the ARB small subunit ribosomal
ribonucleic acid (ssu rRNA) database. Those alignments
contain organisms from the domains Eukarya, Bacteria
and Archaea. In addition, the 101 and 150 sequence
data sets (101_SC, 150_SC) which can be downloaded
at http://www.indiana.edu/˜rac/hpc/fastDNAml were used.
Those data sets have been used by C. Stewart et al. to con-
duct performance analysis of parallel fastDNAml. The larger
101_SC and 150_SC alignments have proved to be very hard
to optimize, in terms of convergence to best-known likeli-
hood values, especially for MrBayes with random starting
trees (see Figure 4). According to a personal communication
with C. Stewart this is due to the fact that these two data sets
contain several hard-to-classify fungi which randomly scat-
ter throughout the final trees. Furthermore, two well-known
real data sets comprising 218 and 500 sequences (218_RDPII,
500_ZILLA) were included into the test set. Those two align-
ments are considered to be ‘classic’ real data benchmarks.
In particular the 500_ZILLA alignment has been studied
extensively under the parsimony criterion (Chase et al., 1993).

We also used 50 synthetic (simulated) 100-taxon alignments
(100_SIM_1, . . . , 100_SIM_50) with a length of 500 base
pairs each. The respective true reference trees and alignments
are available at http://www.lirmm.fr/w3ifa/MAAS and were
originally used to assess accuracy of PHYML (Guindon and
Gascuel, 2003). Details on the generation of those data sets
which contain e.g. varying sequence divergence rates are also
available in the respective paper. Finally, we generated 10 syn-
thetic 4000-taxon (4000_SIM_1, . . . , 4000_SIM_10) align-
ments using the r8s program (Sanderson, 2003) to generate
a random tree with the following command:

begin rates;
simulate diversemodel=bdback

ntaxa=4000 seed=3049;
simulate charevol=yes infinite=yes

startrate=1 minrate=0.1 maxrate=2;
changerate=0.5 model=NORMAL;
describe plot=phylo_description;

end;

Furthermore, we invoked Seq-Gen (Rambaut and Grassly,
1997)

seq-gen -m HKY -l 2000 -s x -t 2.0

with scaling factor x ranging from 0.1 to 1.0 to obtain the
respective synthetic alignments. For sake of completeness the
number of base pairs in each alignment is provided in Table 1.

We compiled MrBayes, PHYML, and RAxML-III with the
native Intel compilericc -03 and executed the programs on
a cluster of unloaded Intel Xeon 2.4GHz processors equipped
with 4GB of main memory at our laboratory. Since PHYML
and RAxML-III are directly comparable and both significantly
faster than MrBayes we mainly focus on those two programs
for performance analysis of compute-intensive large data sets
and complex models of nucleotide substitution. We include
data from sequential executions of MrBayes to show that
the MC3 (Metropolis-Coupled Markov Chain Monte Carlo
simulation) chain does generally not attain stationarity within
acceptable time limits, i.e. less than 24 hours, for real data sets
containing more than 250 taxa. However, simple comparison
of intermediate or final likelihood values does certainly not
represent the only criterion for conducting a fair performance
assessment of maximum likelihood and bayesian inference.
Our intention is to emphasize that coupling those methods
induces substantial benefits.

Small simulated data
For synthetic data we executed MrBayes for 100.000 gen-
erations using 4 MC3 chains and recommended random
starting trees. We specified a sample and print frequency
of 500 and used the last 50 trees to build a majority-rule
consensus tree. Those relatively fast settings for MrBayes
prove to be sufficient to obtain good accuracy values since
analyses for synthetic data converge much faster to a
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Table 1. Alignment lengths

data #bp

101_SC 1858
150_SC 1269
218_RDPII 4182
500_ZILLA 759
150_ARB 3188
200_ARB 3270
250_ARB 3638
500_ARB 4030
1000_ARB 5547
2025_ARB 1517
100_SIM 500
4000_SIM 2000

peak likelihood value or stationary chain than respective
real data experiments. The average RF-rate (Robinson
and Foulds, 1979) on the 50 simulated 100-taxon trees
(100_SIM_1-100) for PHYML is 0.0796, 0.0808 for RAxML-
III, 0.0818 for RAxML-III with a less exhaustive search
setting and 0.0741 for MrBayes. The average execution time
of RAxML-III was 131.05 seconds and 29.27 seconds for
the faster search. PHYML required an average of 35.21
seconds and MrBayes 945.32 seconds. The experiments
illustrate that there seems to be no apparent difference
between PHYML and RAxML-III for small synthetic data.

Large simulated data
In Table 2 we list the normalized Robinson-Foulds distance
and execution time in seconds of PHYML and RAxML-III
for 10 synthetic 4000-taxon alignments. For this test series
we used the most recent linux binary version of PHYML
(v2.1b1) since our source code version constantly exited
with a segmentation fault. Performance results of PHYML
for 4000_SIM_7 and 4000_SIM_10 are not available (n/a)
because we encountered a tree parsing problem with the
respective output trees. It is evident, that PHYML clearly out-
performs RAxML-III on large synthetic data for branch length
scaling factor x ≥ 0.5, i.e. on the 4000_SIM_5-9 alignments.
However, trees scaled by x ≤ 0.5 appear to be more realistic in
a biological context (Bininda-Emonds and Sanderson, 2001).

Real data and fixed model
To facilitate testing we used the HKY85 (Hasegawa et al.,
1985) model of sequence evolution and a fixed transition/
transversion (tr/tv) ratio for these experiments. All align-
ments including the best topologies are available at
http://wwwbode.cs.tum.edu/˜stamatak. Since the tr/tv ratio is
defined differently in PHYML we scaled it accordingly for the
test runs. The manual for PAML (Yang, 1997) which is avail-
able at http://bcr.musc.edu/manuals/pamlDOC.pdf contains a
nice description of differences in the tr/tv ratio definitions
among various maximum likelihood programs on page 20.

Table 2. Topological accuracy and execution times for PHYML &
RAxML-III on simulated data

data PHYML (RF) secs RAxML (RF) secs

4000_SIM_1 0.065 18944 0.065 9152
4000_SIM_2 0.039 22273 0.037 50609
4000_SIM_3 0.033 24907 0.027 97962
4000_SIM_4 0.030 30870 0.031 85080
4000_SIM_5 0.028 24182 0.035 91178
4000_SIM_6 0.027 32614 0.031 176686
4000_SIM_7 n/a n/a 0.028 144519
4000_SIM_8 0.027 34750 0.032 185454
4000_SIM_9 0.026 18828 0.036 78061
4000_SIM_10 n/a n/a 0.034 64690

For real data sets MrBayes was executed over 2.000.000
generations using 4 MC3 chains and random starting trees.
Furthermore, we used a sample and print frequency of
5000. To enable a fair comparison we evaluated all 400 of
MrBayes output trees as well as the final PHYML results with
fastDNAml. For MrBayes we report the value of the topology
with the best likelihood and the execution time at that point.
The trees of this test series are evaluated with fastDNAml
and fixed tr/tv ratios, due to the availability of reference trees
obtained by large scale parallel analyses with PAxML.

In Table 3 we summarize the final likelihood values and
execution times in seconds for PHYML, MrBayes, and
RAxML-III. Since overall execution times of RAxML-III
might appear long compared to to those of PHYML we
indicate the likelihood and the time at which RAxML-III
passed the final likelihood obtained by PHYML in column
R>PHY. Finally, in the last two columns we list the final like-
lihood values and execution times in hours (!) obtained with
PAxML which is essentially equivalent to parallel fastDNAml.
The results were obtained from parallel runs on the HeLiCs
(Heidelberg Linux Cluster System: http://helics.uni-hd.de)
compute cluster and the highest feasible rearrangement set-
ting, in terms of acceptable computation times. The enormous
improvement of execution times illustrates the algorithmic
progress in the field over the last two years. The long over-
all execution times of RAxML-III in comparison to PHYML
are due to the asymptotic convergence of likelihood over time
which is typical for the tree optimization process. A particu-
larly extreme case of slow asymptotic convergence has been
observed for 500_ZILLA (Stamatakis et al., 2004a). There-
fore, the comparatively small differences in final likelihood
values which are usually below 1% should not be underestim-
ated, in terms of the computational effort required to obtain
those values. The application of the Kishino–Hasegawa like-
lihood ratio test shows that all final RAxML-III trees are
significantly better than respective PHYML trees.

Two examples which underline how bayesian analysis can
benefit from ‘traditional’ methods are outlined in Figures 4
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Table 3. PHYML, MrBayes, RAxML-III execution times and likelihood values for real data sets

data PHYML secs MrBayes secs RAxML secs R > PHY secs PAxML hrs

101_SC −74097.6 153 −77191.5 40527 −73919.3 617 −74046.9 31 −73975.9 47
150_SC −44298.1 158 −52028.4 49427 −44142.6 390 −44262.9 33 −44146.9 164
150_ARB −77219.7 313 −77196.7 29383 −77189.7 178 −77197.6 67 −77189.8 300
200_ARB −104826.5 477 −104856.4 156419 −104742.6 272 −104809.0 99 −104743.3 775
250_ARB −131560.3 787 −133238.3 158418 −131468.0 1067 −131549.4 249 −131469.0 1947
500_ARB −253354.2 2235 −263217.8 366496 −252499.4 26124 −252986.4 493 −252588.1 7372
1000_ARB −402215.0 16594 −459392.4 509148 −400925.3 50729 −401571.9 1893 −402282.1 9898
218_RDPII −157923.1 403 −158911.6 138453 −157526.0 6774 −157807.9 244 n/a n/a
500_ZILLA −22186.8 2400 −22259.0 96557 −21033.9 29916 −22036.9 67 n/a n/a

Fig. 4. Convergence behavior of MrBayes for 101_SC with user and
random starting trees over 3.000.000 generations.

Fig. 5. Convergence behavior of MrBayes for 500_ARB with user
and random starting trees.

and 5. In those figures we plot MrBayes likelihood values
over generation numbers with RAxML- and random starting
trees for 101_SC and 500_ARB respectively. Furthermore,
Figure 4 reveals one of the main problems of MC3 analysis

Fig. 6. 150_SC likelihood improvement over time of RAxML-III
and MrBayes for the same random starting tree.

(Huelsenbeck et al., 2002): When to stop the chain? In
the example the run with the random starting tree seems to
have reached apparent stationarity, although the tree is far
from optimal. Therefore, ‘good’ starting tree obtained by
‘traditional’ methods can be useful to significantly acceler-
ate computations and serve as reference point. This justifies
the work on fast ‘traditional’ maximum likelihood meth-
ods despite the emergence and great impact of bayesian
methods (Huelsenbeck et al., 2001). Thus, we do not see
RAxML-III as concurrence to MrBayes, but rather as use-
ful tool to improve bayesian inference and vice versa. Finally,
in order to demonstrate the rapid tree optimization capabilit-
ies of RAxML-III in Figures 6 and 7 we plot the likelihood
improvement over time of RAxML-III and MrBayes for the
same random starting trees.

Real data and estimated model
In this series of real data tests we compare PHYML and
RAxML-III performance on the HKY85 and General Time
Reversible (GTR (Lanave et al., 1984)) model of nucleo-
tide substitution. We let both programs estimate the tr/tv
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Fig. 7. 150_ARB likelihood improvement over time of RAxML-III
and MrBayes for the same random starting tree.

Table 4. Performance of PHYML and RAxML-III for HKY85 and GTR
models of evolution with model parameter optimization

data PHYML secs RAxML secs R > PHY

HKY85
101_SC −74035 104 −73908 71 21
150_SC −44315 85 −44219 64 26
150_ARB −76881 190 −76863 94 49
200_ARB −104316 282 −104270 185 120
250_ARB −131013 405 −130926 342 116
500_ARB −252224 1453 −251781 1049 420
1000_ARB −400881 3908 −399732 3633 1666
2025_ARB −372746 9749 −371472 8426 4779
218_RDPII −156895 230 −156663 331 126

GTR
101_SC −73814 131 −73638 119 49
150_SC −44139 132 −44043 157 60
150_ARB −76500 235 −76490 203 144
200_ARB −103789 714 −103758 352 262
250_ARB −130518 526 −130353 416 218
500_ARB −250858 1170 −250238 1516 688
1000_ARB −398731 4727 −397612 5731 2469
2025_ARB −370539 5299 −369197 10771 5558
218_RDPII −155881 316 −155748 406 268

ratio (HKY85) and the substitution rates (GTR) along with
the tree topology. To save some CPU hours we used a ver-
sion of RAxML-III which terminates immediately when the
tree fails to improve for the first time. To ensure a fair
comparison we evaluated the likelihood of all final trees
with PHYML. Typically final likelihood values obtained by
different programs for the same tree and model of nucleotide
substitution differ due to numerical differences in imple-
mentations. Results are summarized in the same style as in
the previous Section in Table 4 for the HKY85 and GTR
models of sequence evolution respectively.

DISCUSSION
We have presented the most recent version of our pro-
gram RAxML-III for maximum likelihood-based inference
of phylogenetic trees. The code incorporates the HKY85 and
GTR models of DNA sequence evolution and is able to optim-
ize all free model parameters. Furthermore, RAxML-III is
able to perform a maximum likelihood estimate of per-site
evolutionary rates for HKY85. In order to accelerate com-
putations the number of distinct evolutionary rates can be
categorized into a user-specified amount of rate categories.
The program performs worse than PHYML and MrBayes on
synthetic data. However, on real data it outperforms PHYML,
MrBayes, and PAxML in terms of required execution time
and final likelihood values. In addition, we provide fail-
ure scenarios for MrBayes on real data sets and argue that
traditional and bayesian inference should be combined to cir-
cumvent intrinsic problems of either approach. Along with
the RAxML-III source code we provide a large real-data
benchmark set which includes best-known reference trees and
execution times on a specific architecture/compiler combina-
tion. This data collection is intended to serve other researchers
as reference data set to assess performance of maximum like-
lihood programs. The advantage of RAxML-III over PHYML
consist in a more exhaustive analysis of search space which
results in improved final likelihood values and in the ability to
generate distinct random starting trees. In addition, the paral-
lelization of the algorithm is straight-forward and RAxML-III
has significantly lower memory requirements than MrBayes
and PHYML (Stamatakis et al., 2004b). On the other hand
RAxML-III provides significantly less modeling flexibility
than MrBayes and PHYML, i.e. is not able to handle protein
sequence data and does not provide estimation of the propor-
tion of invariable sites or the � model of rate heterogeneity.
An implementation of the missing model features is planned
in a future version of the program.

Our results show that both RAxML-III (on real data) and
PHYML (on simulated data) represent very fast and accurate
conventional maximum likelihood programs, which allow for
sequential inference of large trees within reasonable times on
standard PC architectures.
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