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Abstract

Background: Despite the potential shortcomings of using phenotype (“morphological“) data for phylogenetic

inference, there exist scenarios where only morphological data is available for systematic classification (e.g.,

phylogenetic placement of fossil records, analysis of large taxonomic groups for which DNA data are only

available for a small number of species). Because of the frequently incongruent phylogenetic signal between

morphological and molecular data partitions, we need to devise computational methods to determine

morphological site patterns that are congruent with the molecular tree (which we assume to represent the “true”

tree relative to any tree inferred from morphological data), to improve the accuracy of the phylogenetic

classification/placement of taxa for which only morphological data exist.

Results: We developed methods for determining morphological characters that are congruent with the molecular

tree (site weight calibration) and for conducting phylogenetic binning (assignment of morphological taxa to

branches of the molecular reference tree) and implemented those methods in the widely used program RAxML.

We applied our methods to a real world case, the taxonomy of the lichen genera Allographa and Graphis, and

show that these methods can improve the assignment accuracy of morphologically defined taxa to the two

genera. We also tested our methods systematically on five additional datasets that contained both

morphological and molecular data.
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Conclusions: We demonstrate that site weight calibration can be used to improve the systematic

assignment/binning accuracy of taxa for which only morphological data exist.

Availability: The site weight calibration and binning methods are implemented in the RAxML (v. 7.2.7)

open-source code available at: http://wwwkramer.in.tum.de/exelixis/software.html.

Background

Since the advent of PCR and automated sequencing, molecular approaches have largely replaced

non-molecular methods for phylogeny reconstruction. Molecular data have several advantages over

morphological data:

1. The number of characters is much larger, typically around 300 parsimony-informative sites for a

single-gene analysis, and increasingly over 1,000 in multi-gene approaches, whereas morphological

data sets rarely contain more than 100-200 characters, especially in groups poor in phenotypic

features such as fungi, including the lichens. In a maximum likelihood (ML [1]) context, molecular

data typically comprises 500-1,000 distinct site patterns for a single gene and significantly more than

10,000 in current phylogenomic analyses [2]. Simulation studies [3, 4] have shown that tree

reconstruction accuracy increases significantly with the number of site

patterns/parsimony-informative sites.

2. Molecular data have an intrinsic discrete code, whereas morphological data have to be defined as

separate characters and coded as character states, which leaves room for subjectivity and coding

errors due to character misinterpretation.

3. The amount of homoplasy is significantly smaller in molecular data depending on the gene, usually

less than 5-10% of parsimony-informative sites are homoplastic, whereas in morphological data sets,

quite frequently 50% or more of the characters exhibit homoplasy.

As a consequence, phylogenies inferred from molecular data versus those inferred from morphological data

can be highly incongruent [5], and phylogenies inferred from morphological data often lack resolution and

support. Thus, simply concatenating morphological and molecular data partitions to conduct a joint (also
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referred to as total evidence approach) phylogenetic inference may lead to biased topologies, if the number

of homoplastic morphological characters is high, compared to the number of molecular characters.

Despite the potential shortcomings of morphological data and the increasing availability as well as

decreasing cost of molecular data for phylogenetic inference, there exist several application scenarios where

input from morphological data is indispensable. One such scenario is the reconstruction of phylogenies

involving fossils (for which molecular data are not available), or the placement of fossils into given

molecular reference trees [5].

Another application scenario consists of systematic classification—denoted as ’phylogenetic binning’

throughout this paper—of large taxonomic groups for which molecular data are only available for a small

number of species. Consider a taxon of 500 species for which 50 species have been sequenced. Assume that

the result of a phylogenetic analysis of these 50 species indicates that there exist three separate genera.

Logistically, sequencing the remaining 450 species to disentangle their generic status may represent a

nearly impossible task, in particular if rare species or species only known from type material are involved.

One would then face the problem that 50 species can be assigned to definitive lineages, whereas the status

of the 450 species would remain unresolved. Alternatively, the morphological features of these species can

be used to bin (assign) them via appropriate algorithms to the corresponding genus, or to additional

branches of the molecular reference tree that are located between the genera, which we term ’binning no

man’s land’, thus indicating that potential additional lineages may exist which have not yet been

sequenced. The work-flow of such a basic phylogenetic binning procedure is outlined in Figure 1. The

binning procedure assigns taxa for which no molecular data are available to one of the three genera in this

example, without extending the molecular reference tree to a fully bifurcating tree containing 500 taxa.

One may also consider an example (as is the case for the two lichen genera we studied here) of a reference

tree with two genera and an outgroup (see Figure 2). In this scenario we intended to determine how many

morphologically defined taxa are binned to the left and to the right of the outgroup and also, which taxa

are binned into the branch leading to the outgroup, which would represent the ’binning no man’s land’ in

this scenario.

Based on the prolegomena, molecular and morphological data can give rise to conflicting phylogenetic

signals, and because of the aforementioned properties, particularly homoplasy, phylogenies based on

molecular data are usually to be trusted more than those based on morphological data. Therefore, methods

that help to extract and deploy the morphological signal that is congruent to the molecular phylogenetic

signal can help to improve accuracy in combined molecular and morphological data analyses such as, for
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instance, phylogenetic binning.

One such method for improving accuracy consists of calibrating weights for morphological characters based

upon their degree of congruence with a molecular reference topology. In other words, morphological

characters that are congruent with the reference tree will receive a high weight and characters that are

incongruent will receive a low weight. Evidently, the weight calibration requires a dataset or a subset of

taxa for which molecular and morphological data are available. Using the calibrated weights, additional

taxa (e.g., fossil taxa), for which only morphological characters are known can then be placed into the

molecular reference tree (assigned to branches of the reference tree) using maximum likelihood [5]. Fossil

placement using such a weight vector can increase placement accuracy in the tree by up to 25% on real

world datasets [5].

In this paper, we investigated a different application of weight calibration, which allows for phylogenetic

binning of a large number of taxa for which only morphological data are available, based on a small subset

with known molecular and morphological data. We also extended our weight calibration algorithm [5] by a

parsimony calibration method. By example of the lichen genera (bins) Allographa and Graphis, we show

that weight calibration can be deployed to obtain a biologically reasonable and highly supported binning of

species into two genetically distant, but morphologically similar genera. Thus, weight calibration in

combination with binning can be used to assign morphological taxa to distinct genera more reliably.

Thereby, one can formulate hypotheses of their systematic placement based upon an objective criterion

which can then be used for targeted hypothesis testing by sequencing selected species, rather than using a

shotgun approach for sequencing whatever is available.

Methods
Datasets

For this study, we used the lichen genus Graphis (Ascomycota: Lecanoromycetes: Ostropales:

Graphidaceae) as an example, which has recently been shown to comprise two separate, distantly related

lineages [6] which, however, are morphologically similar. The alignment entailed a molecular data partition

of mitochondrial small subunit (mtSSU) and nuclear large subunit (nuLSU) rDNA for 16 ingroup species,

and a morphological data partition with 48 characters/traits for a total of 313 ingroup species. The

morphological data were used in [7] for a multivariate analysis study and included thallus and fruiting

body morphology and anatomy as well as secondary chemistry (Table 1). As outgroup, we used Fissurina

marginata, which has a basal position in Graphidaceae. The data were arranged as follows:
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1. Molecular data set of 16 ingroup taxa plus 1 outgroup taxon.

2. Morphological data set of (the same) 16 ingroup taxa plus 1 outgroup taxon.

3. Morphological data set of the remaining 297 ingroup taxa for which no molecular data are yet

available.

The PHYLIP files of the concatenated molecular dataset of 17 taxa as well as the morphological data

matrix of all 314 taxa are available for download at

http://wwwkramer.in.tum.de/exelixis/phylogeneticBinning.tar.bz2.

In addition to this dataset, we also used the five concatenated molecular/morphological datasets from [5]

to conduct additional systematic tests. For convenience we denote these datasets as D1 through D5.

Dataset D1 [8] contains 35 taxa of walnut trees (Juglandaceae). D2 [9] comprises 23 Marsupial sequences.

D3 [10] contains 32 taxa of Amphibians (Caudates). D4 [11] contains 81 taxa of tree-frogs (Hylidae).

Finally, D5 [12] contains 18 taxa that span a wider variety of species than the other datasets, ranging from

the chicken to the homo sapiens.

Algorithms

To carry out phylogenetic binning, we used and combined two algorithms that have recently been

implemented in the RAxML [13] open source code for phylogenetic inference under Maximum Likelihood

(v. 7.2.7, available at http://wwwkramer.in.tum.de/exelixis/software.html).

Weight Calibration

The RAxML weight calibration algorithm can be used to infer weights for morphological sites according to

their degree of congruence with the molecular reference tree. Essentially, congruent sites are up-weighted,

while incongruent sites are down-weighted. Previous computational experiments showed that deploying

calibrated weights can improve the accuracy of fossil placement on real datasets by 25% on average [5].

Weight calibration is only conducted on those taxa of the data matrix for which molecular and

morphological data are available.

The algorithm for inferring ML-based weights by using the molecular reference tree and the morphological

data partition for the taxa in the reference tree works as follows: Initially, ML model parameters are

optimized on the fixed reference tree and the per-site log likelihood scores are computed and stored.

Thereafter, the algorithm generates a certain number of random trees (100 replicates have proved to be
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sufficient [5]) and re-computes the per site log likelihood scores on each random tree. Integer weights are

then obtained by counting the number of times each site yields a worse log likelihood score on a randomized

tree than on the reference tree. In other words, sites that exhibit a signal that is highly congruent to the

molecular tree receive a high weight and sites that are highly incongruent receive a low weight.

For the present analysis, we also implemented an option to infer weights under parsimony in RAxML.

Initially, we read in the molecular reference tree. Then, RAxML computes the parsimony score for each

site. We then compute intermediate weights for each site by subtracting the actual parsimony score from

the optimal possible score based upon the composition of the site. This yields high weights for incongruent

sites and low weights for congruent sites. Finally, we reverse the weight vector and normalize the weights

to a range between 0 and 100 by using the maximum weight in the intermediate weight vector.

Phylogenetic Binning

Given the likelihood- or parsimony-based weight vectors, the Evolutionary Placement Algorithm (EPA)

implemented in RAxML [14] can be used to bin the morphological taxa into the genera (or any given

lineage) of the molecular reference tree.

The EPA was initially developed for placing short reads as obtained, for instance, from 454 pyrosequencing

runs into a given reference tree based on full length (e.g., 16S) sequences. Instead of computing a fully

bifurcating tree topology comprising all short reads as well as the full length reference sequences, the

algorithm determines the optimal ML-based insertion position (insertion branch) for each read individually,

that is, it assigns each read to a branch of the reference tree topology (independently of all other reads).

The EPA algorithm can also assign an individual read to an area (several branches) of the reference tree

via a standard phylogenetic bootstrap procedure [15] or via likelihood weights [16, 17]. That is, the EPA

provides a means to infer placement uncertainty. For details please refer to [14]. Thus, the original

application scenario for the EPA is to place short reads into a given reference tree and derive, for instance,

the microbial diversity of a sample by means of the distribution of reads in the tree. However, as we show

here, the algorithm can also be used to bin different morphologically defined taxa (species) into the lineages

(genera) of a molecular reference tree. This represents a more coarse-grain use of the EPA, because we are

only interested to infer—via phylogenetic placement—to which genus (set of insertion branches) a taxon

belongs. In addition, it is straight-forward to use a likelihood- or parsimony-based integer weight vector

with the EPA, since using a site-weight vector is a standard RAxML option (-a option).

6



Analysis Pipeline

The overall analysis procedure consists of the following four steps:

1. Infer a reference tree topology (e.g., best-known ML tree) using the molecular data partition only.

2. Calibrate site weights (under ML or parsimony) using the reference tree and only the morphological

data of the taxa for which there also exists molecular data.

3. Invoke the EPA method (optionally with BS) using the previously computed weight vector, the

morphological data of all taxa, and the reference tree as input. All taxa for which only morphological

data is available, that is, all taxa not contained in the molecular reference tree, will be assigned to

branches of the reference tree.

4. Execute a post-analysis script that parses the EPA output files to determine the phylogenetic

assignments/bins (genera or ’no man’s land’) of the morphological taxa.

Binning Tool

To facilitate the usage of the methods that are presented here, we have designed a flexible binning tool in

JAVA. The tool reads in a reference tree and the results of the phylogenetic placement file as obtained from

the EPA algorithm in RAxML. It also allows the user to specify an arbitrary number of phylogenetic bins

(clades/subtrees, see Figure 1). This can be done by listing those taxa of the reference tree that form a bin

in a plain text input file. In other words, the user needs to provide several taxon lists that form bins,

corresponding to monophyletic lineages of the reference tree. The user can also chose if the branch to

which a bin is attached shall form part of the respective bins or not. All placements into branches that do

not form part of a bin are assigned to a separate ’no man’s land’ bin. Alternatively, as carried out for the

lichen study, the user may simply only specify the outgroup name. Our JAVA tool will then automatically

divide the tree into three bins as shown in Figure 2.

Experimental setup

Real data analysis

The real data set of the lichen genera was analyzed as follows: We initially reconstructed a best-known ML

tree (remember that finding the optimal ML tree is an NP-hard problem [18], that is, the number of

possible trees for n taxa is so large that it is not feasible to find the ML tree) using RAxML for the

molecular data. Then, we computed parsimony and ML (using 100 random trees) weight vectors as
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described above. Thereafter, we executed three EPA runs with 100 BS replicates each for the

parsimony-weighted, ML-weighted, and unweighted case.

To further analyze our data, we conducted a leave-one out experiment on the 16 taxa (excluding the

outgroup) for which both morphological and molecular data were available. In this experiment, we pruned

one of the 16 ingroup taxa at a time from the reference tree and placed it back into the tree via the

Evolutionary Placement Algorithm (EPA) using exclusively the morphological data partition. We

conducted EPA runs with and without a weight vector to show that using a weight vector can improve

binning accuracy. The results are summarized in Figure 3.

Systematic analysis

We also conducted a more systematic analysis of placement accuracy using the aforementioned five

real-world datasets D1 through D5 [5]. Here we also assessed binning accuracy, assuming two bins

(lineages), by means of leave-one-out experiments, that is, we once again pruned one taxon at a time from

the molecular reference tree and then re-inserted it using the EPA on morphological data. To define

lineages in the reference trees of D1-D5, we considered, all splits (bipartitions) of the reference trees with

BS support higher than 75%. Thus, for all well-supported splits, we assessed how frequently every taxon

on one side (the good/correct bin) of a split ended up on the other side of that split (in the “wrong” bin)

when placed back into the tree using the EPA, the corresponding weight vector, and the morphological

data only. We applied this test to all well-supported branches in the reference trees. This allowed for

testing how many taxa would end up on the wrong side (in the wrong bin) of a well supported branch

using our binning approach. An outline of this test procedure is provided in Figure 4. Note that we used

the EPA with the BS option, that is, for each taxon we counted the BS support of insertions into the

correct bin, the incorrect bin, or the ’no man’s land’ bin (the highly supported branch across which we

assess binning accuracy, see Figure 4).

Results and Discussion
Results

Real data analysis

Likelihood-based site weight calibration & binning: Based on the unweighted morphological data, 252 of the

297 taxa for which no molecular data were available could be assigned to either Graphis s.str. or Allographa

with strong BS support (90% or higher) and another 20 with good BS support (70% or higher; Table 3).

For 23 species, support for either clade was low (less than 70%, and two further species, Graphis saxiseda
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and G. evirescens, did not cluster with neither Graphis nor Allographa but with the outgroup Fissurina (’no

man’s land’). Weighting of the morphological characters based on the 16-taxon set and using maximum

likelihood weight calibration changed the proportions as follows: 281 taxa could be assigned to either

Graphis s.str. or Allographa with strong support and another seven species with good support, whereas

seven species remained unresolved (less than 70% bootstrap support for either of the clades) and the two

species Graphis saxiseda and G. evirescens received strong support for clustering with the outgroup (Table

2). In total, no change in the genus binning or support between unweighted and weighted morphological

data was observed for 229 out of 297 taxa, whereas support and/or binning improved for 58 further species

when weighting the morphological characters based on maximum likelihood weight calibration. In two

cases, support for the corresponding clade/bin decreased from strong to good (G. elegans within Graphis)

and strong to low (G. olivacea within Allographa), respectively, whereas in a further two cases, support

changed from good to low (G. inspersolongula and G. uruguayensis within Graphis).

Seven out of 297 species showed topological conflict (assigned to different bins) between unweighted and

weighted data: G. novopalmicola changed from Allographa (low support) to Graphis (strong support) and

G. diplocheila from Allographa (low support) to Graphis (strong support), whereas G. nigrocarpa,

G. subimmersa, and G. subtracta changed from Graphis (low support) to Allographa (good support).

Graphis daintriensis changed from Graphis (good support) to Allographa (strong support) and G. rimulosa

from Graphis (strong support) to Allographa (good support). All conflicting taxa exhibit intermediate

morphologies between Graphis and Allographa and their placement based on weighted (as compared to

unweighted) morphological characters is reasonable except for one species, G. rimulosa, which is expected

to belong in Graphis s.str. which is reflected by the strongly supported placement into Graphis in the

unweighted analysis. One of the two species that clustered with the outgroup, G. saxiseda, has been shown

to belong in a different genus, that of Carbacanthographis, which is not related to neither Graphis s.str. nor

Allographa [19], and hence its outgroup placement makes sense.

The analysis also helped to unambiguously assign two groups of Graphis s.lat. with uncertain systematic

affinities, the G. dussii and the G. subserpentina group [7], with confidence to either Graphis s.str. or

Allographa. Of the eleven species of the G. dussii group, nine were strongly supported within Allographa

and one (G. enteroleuca) within Graphis, whereas a further species, G. regularis, remained unresolved

(Table 3). None of these species has been sequenced so far. Of the 22 species of the G. subserpentina

group, one has been sequenced and confirmed in Graphis, and an additional 17 taxa showed good to strong

support within Graphis. However, four species, G. cycasicola, G. nigrocarpa, G. subhiascens, and
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G. superans, were supported within Allographa (Table 3).

Parsimony-based site weight calibration & binning: For this analysis, we inferred morphological site weights

using parsimony as describe above, and once again assigned taxa to bins (genera) using the

likelihood-based EPA algorithm with parsimony-based weights. Compared to weighting based on ML, MP

weighting showed no change in binning or support for 266 out of 297 taxa. For 19 taxa, binning and/or

support improved whereas for 11 taxa, either support decreased or the binning result appeared to be less

reasonable. One taxon showed significant topological conflict. Thus, MP weighting yielded slightly better

overall results than ML weighting, suggesting that both methods should be used to detect consensus and

conflict between binning approaches.

Comparative result visualization: In Figure 5 we summarize the results of the binning process for all 297

species using the three tested methods (unweighted binning, likelihood-based site weight calibration

binning, parsimony-based site weight calibration binning). The 297 species are located along the y-axis of

the heatmap-like graph. We sorted them according to the difference between the BS support values for a

binning into Graphis and Allographa using the BS supports as obtained from the unweighted binning

process. The species that are assigned to the outgroup are located at the bottom of the graph and sorted

according to increasing BS support for falling into the outgroup bin.

The graph indicates that site-weight calibration based placement yields a clearer—in many cases

unique—assignment of species to phylogenetic bins and can thus be deployed to resolve ambiguous

binnings.

Detecting mis-labelled taxa: After conducting the binning analyses on the lichen genera, we realized that

sequences of Graphis cleistoblephara were available in GenBank. This species forms part of the G. dussii

group [7]. Our molecular data partition did not contain sequences for this group, but according to the

phylogenetic binning analysis it should fall into the Allographa lineage. Phylogenetic analysis, however,

showed that the molecular sequence for Graphis cleistoblephara was strongly supported within the Graphis

lineage. This contradicts our binning approach. However, a re-examination of the specimen that was used

for sequencing, revealed that it did not represent G. cleistoblephara in the G. dussii group but a

superficially similar, yet unrelated species, G. hiascens in the G. subserpentina group. This revised

identification thus confirmed that the binning result obtained from our study is correct, since it places the

G. subserpentina group within Graphis. Apart from demonstrating the importance of correct taxonomy of

sequenced vouchers, this suggests that phylogenetic binning can potentially also be used for identifying
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mis-labelled GenBank sequences.

Control experiments

We conducted two types of control experiments.

Lichen control experiment: In the first experiment we executed the likelihood-based binning approach on the

16 lichen ingroup taxa for which both morphological and molecular data was available. Figure 3 shows that

binning accuracy improved substantially for all ingroup taxa t1 through t16 —except for taxon 13 that was

consistently placed into the wrong bin— when calibrated morphological site weights are used. In the

weighted case, taxa t8, t11, t12, and t15 were unambiguously binned with 100% BS support into the

correct bin.

Taxon 13 represents Graphis japonica in the G. subserpentina group and is morphologically intermediate

between Allographa and Graphis. This shows that sequencing a single taxon within a larger group and then

using morphological binning can improve systematic classifications. With the morphological data alone,

species of the G. subserpentina group would cluster with Allographa, as shown in a previous multivariate

analysis [7]. Therefore, taxon 13 bins incorrectly with Allographa. However, genetically the taxon forms

part of the Graphis lineage, and including this taxon in the reference tree will then bin other species of the

G. subserpentina group correctly within Graphis.

Systematic control experiment: The results in terms of accumulated BS support for correctly binned taxa in

datasets D1 through D5 are provided in Table 2. For each dataset we provide the BS support for correct

binnings for unweighted and likelihood-weighted binning runs with the Evolutionary Placement Algorithm

(EPA). In contrast to the control experiment on the lichen dataset, the improvements achieved by using

morphological site weight calibration were marginal. However, the table demonstrates that (i) using weight

calibration did not have a negative impact on binning accuracy, and (ii) that binning using the EPA, be it

weighted or unweighted was highly accurate, exceeding 95% BS support on average.

Discussion

The method of assessing systematic affinities of species by means of weighting morphological characters

based on maximum likelihood and parsimony calibrations and phylogenetic binning offers new possibilities

in taxonomic, systematic, phylogenetic, and evolutionary research. While morphological data cannot

replace molecular data for inferring phylogenies and relationships between taxa, the method offers a

quantitative and objective assessment of morphological data sets including a measure of confidence of
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systematic placement, in contrast to ad hoc decisions that are based upon morphological characters alone.

This method is especially useful when dealing with phylogenies that involve large groups of taxa for which

only a small part have been sequenced or molecular data are not available due to methodological

constraints, such as fossils. The methods presented here are readily available in the widely used open

source tool RAxML (v. 7.2.7) and profit from the highly optimized likelihood function implementations for

binary as well as multi-state morphological characters. Given a molecular reference tree of taxa for which

morphological data have also been scored, phylogenetic binning can easily be computed by invoking

RAxML once for site weight calibration using those taxa that form part of the reference tree, and once for

binning additional morphologically defined taxa into the reference tree topology.

In the present case, the method helped to assess the taxonomic status of species hitherto placed in the

collective lichen genus Graphis. This genus recently received a revised classification including species of

Graphidaceae with a set of morphological characters: fruiting bodies with conspicuous margins and

carbonized excipulum, unornamented paraphyses, ascospores with interlocular plates that stain violet-blue

in Lugol’s solution, and a rather simple chemistry [20]. According to this revised definition, the genus

included over 300 accepted species [7,19]. However, molecular phylogenetic analysis suggested that Graphis

s.lat. represented two separate, only distantly related lineages, Graphis s.str. and Allographa (Rivas Plata

et al. 2010 [6]). Since only 16 species of Graphis s.lat. had been sequenced for that analysis, it required to

classify the remaining nearly 300 species based on morphological characters alone. This represents a

challenge since the morphological differences between the two genera are fuzzy. The alternative of

re-classifying only the 16 species (for which molecular data are available) and leaving the remaining nearly

300 species unclassified until sequence data becomes available does not appear to be acceptable for

practical reasons. Specifically, two species groups, the G. dussii and the G. subserpentina group, appear as

being intermediate between Graphis s.str. and Allographa (Rivas Plata et al. 2010 [6]), and without

sequencing a larger number of species, their placement in either genus would have been provisional without

the present study. With the results at hand, both groups can be confidently placed within either Graphis

s.str. (G. subserpentina group) or Allographa (G. dussii group).

In addition to the general advantages of this method, it also helped to identify taxa of particular interest or

doubtful taxonomic status. An unexpected result was the clustering of Graphis saxiseda with the outgroup

Fissurina (’no man’s land’). This species has already been recombined in Carbacanthographis, a genus

unrelated to both Graphis s.str. and Allographa [19], but was retained in the morphological data set by

accident. The analytical method identified it as not belonging neither to Graphis s.str. nor to Allographa.
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In addition, several taxa that received low support for either clade in this analysis or showed conflicting

topology for unweighted and weighted characters can now be restudied or sequenced in a targeted way to

clarify their systematic positions. Thus, our method provides a quantitative and objective approach to

formulate hypotheses about phylogenetic relationships, allowing to sequence selected taxa in a targeted

manner.

Conclusions

We presented a novel method for binning/assigning morphological taxa to reference lineages by means of

the EPA algorithm that was originally designed to classify short pyrosequencing reads and by means of a

morphological site weight calibration method that was initially devised to improve fossil placement

accuracy. Despite impressive advances in molecular sequencing technologies, we show that there exist cases

where only morphological data is available for extant species and that tools are required for analyzing such

datasets.

By example of a lichen dataset, we demonstrate the increased ability of our approach to correctly bin

morphological taxa into the correct lineage. This observation is supported by means of additional

experiments in five other real world datasets that contain morphological and molecular data partitions as

well as by leave-one-out experiments on those lichen taxa for which morphological and molecular data are

available.

The methods used here are freely available for download at

http://wwwkramer.in.tum.de/exelixis/software.html.
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Figures
Figure 1 - Phylogenetic binning on an unrooted tree

Outline of the phylogenetic binning procedure for morphological taxa into an unrooted binary tree with

three genera.
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Figure 2 - Phylogenetic binning on a rooted tree

.Outline of the phylogenetic binning procedure for morphological taxa into an rooted (by an outgroup)

binary tree with two genera.
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Figure 3 - BS proportions for correctly and incorrectly placed taxa in the lichen dataset

Plots of the BS support (obtained by a leave-one-out test) for correctly and incorrectly binned taxa with

and without site weight calibration using taxa of the lichen dataset for which morphological and molecular

data was available.
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Figure 4 - Systematic test procedure

Outline of the systematic test procedure used to assess the accuracy of the binning algorithm on 5

real-world datasets.
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Figure 5 - Visualization of the Morphology-based Assignment of 297 lichen taxa to the three

phylogenetic bins

Visualization of the morphology based assignment, including BS support, to the three bins [Allographa

(denoted by A), Graphis (denoted by G), Outgroup (denoted by O)] using the unweighted binning method

(denoted by UNW), the likelihood-weighted binning method (denoted by WGH-ML), and the

parsimony-weighted method (denoted by WG-MP). Dark shaded areas indicate high support, light grey

areas indicate low support.
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Tables
Table 1 - Morphological characters used in the analyses and their character state definitions and coding

Character State 1 State 2 State 3 State 4 State 5
Thallus color olive white-grey
Thallus cortex present absent
Thallus surface smooth verrucose
Soralia absent present
Isidia absent present
Lirellae emergence immersed erumpent prominent sessile
Lirellae thalline margi compl. thick compl. thin lateral basal absent
Lateral margin thick absent present
Labia sharply delimited absent present
Thalline margin flaking absent present
Lirellae length 0.5–2 mm 2–3 mm 3–5 mm 5–80 mm
Lirellae width 0.1–0.3 mm 0.3–0.5 mm 0.5–1 mm 1–1.5 mm
Length to width ratio 1–1.5 1.5–2 2–5 5–10 10–100
Lirellae branching absent sparse irregular radiate stellate
Lirellae pseudostromata absent present
Labia white cover absent present
Labia pruina absent present
Labia pruina yellow absent present
Labia pruina orange absent present
Disc exposure absent present
Disc pruina absent present
Disc pruina orange absent present
Labia striation entire striate
Excipulum carbonization absent apical lateral complete
Hymenium inspersion A absent present
Hymenium inspersion B absent present
Hymenium pigment absent present
Ascospores number 8/ascus 4–8/ascus 2–4/ascus 1–2/ascus
Ascospores length 10–20 µm 20–50 µm 50–100 µm 100–200 µm 200–300 µm
Ascospores width 5–8 µm 8–15 µm 15–30 µm 30–50 µm
Length to width ratio 1–2 2–4 4–8 8–15
Septa transversal 3–5 5–9 9–19 19–39
Septa longitudinal absent terminal 0–2/segm. 3–7/segm.
Endospore well-devel. reduced
Pigmentation hyaline grey-brown
Chemistry norstictic absent present
Chemistry salazinic absent present
Chemistry stictic absent present
Chemistry hypostictic absent present
Chemistry hirtifructic absent present
Chemistry protocetraric absent present
Chemistry lichexanthone absent present
Chemistry pigm. yellow absent present
Chemistry pigm. orange absent present
Chemistry isohypocrelli absent present
Chemistry unknown absent present
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Table 2 - Binning accuracy for weighted and unweighted placement runs

Binning accuracy for runs with and without calibrated morphological site weights on 5 real-world datasets.
UNWEIGHTED WEIGHTED

D1 98.7476% 98.7551%
D2 99.2424% 99.2424%
D3 98.0072% 98.9187%
D4 98.6638% 98.932%
D5 96.6667% 96.3889%
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