
The RAxML-VI-HPC Manual

Alexandros Stamatakis

Institute of Computer Science, Foundation for Research and Technology–Hellas
stamatak@ics.forth.gr

1 About RAxML

RAxML (Randomized Axelerated Maximum Likelihood) is a program for
Maximum Likelihood-based inference of large phylogenetic trees. It has orig-
inally been derived from fastDNAml.

1.1 A Brief Version History

This Section provides a brief version history of RAxML, mainly to avoid
potential confusion.
– RAxML-II: Initial Implementation of the hill climbing algorithm with the

lazy subtree rearrangement technique. Implementation of a parallel MPI-
based and distributed version of the program.

– RAxML-III: Implementation of additional models of nucleotide substitu-
tion and ML-based optimization of model parameters.

– RAxML-IV: Never existed, don’t ask me why.
– RAxML-V: Introduction of the simulated annealing search algorithm, im-

plementation of protein models, OpenMP-parallelization.
– RAxML-VI: Introduction of the novel rapid hill climbing algorithm and

automatic determination of a “good” rearrangement setting
– RAxML-VI-HPC: Improvement of the OpenMP parallelization, technical

tuning of the GTR-based likelihood models, re-implementation of the MP
(Maximum Parsimony) starting tree computations, MPI-based parallel ver-
sion for multiple bootstrapping.

1.2 RAxML-VI-HPC

HPC stands for High Performance Computing and this specific version of
RAxML is a dedicated and highly optimized version, which handles only
DNA alignments under the GTR model of nucleotide substitution in-
cluding rate heterogeneity.

In addition, it only implements the novel, fast, and currently unpublished
rapid hill climbing algorithm, which yields significant performance improve-
ments on huge alignments compared to the previous search algorithms. A

2 Alexandros Stamatakis

run-time improvement of factor 67 has been measured for a 25,000-taxon
dataset.

The program has explicitly been developed to handle extremely large
datasets, such as a 25,000-taxon alignment of protobacteria (length approxi-
mately 1,500 base pairs, run time on a single CPU: 13.5 days, memory con-
sumption: 1.5GB) or a large multi-gene alignment of 2,100 mammals with a
length of over 50,000 base pairs (run time: 1 week with the OpenMP version
of RAxML on 4 CPUs, memory consumption: 2.9GB).

List of differences with respect to the standard RAxML-VI version:

– Highly optimized likelihood functions, 15%–30% faster than in the stan-
dard version.

– Re-implementation of the parsimony starting tree calculations from scratch
(RAxML does not use PHYLIP components for this any more) which are
also significantly faster (up to factor 10 on 25,000 taxa) than the originally
used dnapars implementation.

– An MPI-based (Message Passing Interface) implementation to perform
multiple bootstraps or multiple analyses on the original alignment in par-
allel on a cluster. Note that, this is not a parallel implementation of the
search algorithm, which is nonetheless under preparation.

– Re-Implementation of the branch-length and model optimization function
for the -m GTRGAMMA model which is now numerically more stable.

– Implementation of the -m GTRMIX model which allows you to infer trees
under the faster -m GTRCAT approximation/work-around (it is explic-
itly not called model any more) but then evaluates the likelihood of final
topologies under the -m GTRGAMMA model.

– new command-line option -# n which allows you to specify that RAxML
should execute n subsequent analyses on the initial alignment or n subse-
quent non-parametric bootstraps when used in combination with the -b

option.

1.3 Citing RAxML

If you use sequential RAxML-VI-HPC please cite [7]. In case you are using the
OpenMP version of RAxML please also cite [8]. The novel rapid hill-climbing
algorithm will be described in a future paper. Until this gets published please
also cite my web-page www.ics.forth.gr/˜stamatak when using RAxML-VI-
HPC.

2 IMPORTANT WARNINGS

2.1 RAxML Likelihood Values

It is very important to note that the likelihood values produced by RAxML
can not be directly compared to likelihood values of other ML programs.

The RAxML Manual 3

Also note, that likelihood values obtained by RAxML-VI-HPC can not be di-
rectly compared to those of RAxML-VI (standard version) either. This is due
to changes in the likelihood function implementation and model parameter
optimization procedure!

Thus, if you want to compare topologies obtained by distinct ML pro-
grams make sure that you optimize branch lengths and model parameters of
final topologies with one and the same program. This can be done by
either using the respective RAxML option (-f e) or e.g. the corresponding
option in PHYML [1]. I mostly optimize final topologies with PHYML to
avoid potential criticism that my experiments are biased in favor of RAxML.

PERSONAL OPINION: Differences in Likelihood scores:
In theory all ML programs implement the same numerical function and

should thus yield the same likelihood score for a fixed model and a given
tree topology. However, if we try to implement a numerical function on a
finite machine we will unavoidably get rounding errors. Even if we change
the sequence (or if it is changed by the compiler) of some operations applied
to floating point or double precision arithmetics in our computer we will
probably get different results. In my experiments I have observed differences
among final likelihood values between GARLI, IQPNNI, PHYML, RAxML
(every program showed a different value). RAxML likelihood values typically
differ by a greater amount from those obtained by other programs. The ra-
tionale for this is that the general strategy adopted in RAxML is to trade
exactness of the likelihood score for speed with respect to the calculations
(re-ordering of instructions, low-level optimization etc.) and the scaling strat-
egy for very small likelihood values which is only an approximate scaling. My
personal opinion is that the topological search (number of topologies ana-
lyzed) is much more important than exact likelihood scores to obtain “good”
final ML trees. Note that, if you perform a bootstrap analysis you don’t need
to worry too much about likelihood values anyway.

2.2 The GTRCAT Mystery

There is a paper available now [5] which describes what GTRCAT is and why
I don’t like GTRGAMMA. The main idea behind GTRCAT is to allow for inte-
gration of rate heterogeneity into phylogenetic analyses at a significantly
lower computational cost (about 4 times faster) and memory consump-
tion (4 times lower). However, due to the way individual rates are opti-
mized and assigned to rate categories in GTRCAT (for details on this please
read the paper), this approximation is numerically instable. This means:
DO NOT COMPARE ALTERNATIVE TREE TOPOLOGIES
BASED ON THEIR GTRCAT LIKELIHOOD VALUES!

There is a large possibility for a biased assessment of trees. This is the
reason why GTRCAT is called approximation instead of model.

4 Alexandros Stamatakis

3 Installation, Compilers, Platforms

RAxML-VI-HPC can be download at www.ics.forth.gr/˜stamatak as open
source code. To install RAxML-VI download the RAxML-VI-HPC.tar.gz

archive and uncompress it.
This version comes in three flavors:

1. raxmlHPC just the standard sequential version, compile it with gcc by
typing make.

2. raxmlHPC-OMP the OpenMP-parallelized version of RAxML which runs
on 2-way (or dual processor), 4-way, and 8-way CPUs. It is best compiled
with the pgcc (PGI) compiler by typing make -f Makefile.pgi.

3. raxmlHPC-MPI the MPI-parallelized version for all types of clusters to
perform parallel bootstraps or multiple inferences on the original align-
ment, compile with the mpicc (MPI) and gcc compilers by typing
make -f Makefile.mpi.

3.1 When to use which version?

The use of the sequential version is for small datasets and for initial experi-
ments to determine appropriate search parameters.

The OpenMP version will work well for very long alignments (rules of
thump: ≥ 3, 000 base pairs under GTRGAMMA and ≥ 5, 000 base pairs under
GTRCAT). If your alignments are not that long and you have e.g. a dual-
processor available it is better to run independent parallel booststraps or
multiple analyses on them using the sequential version. Do not forget to
set the number of threads OMP_NUM_THREADS that will be executed per node
to the number of CPUs. If you have a bash shell and a 4-way Opteron make
sure to set export OMP_NUM_THREADS=4.

The MPI-version is for executing your production runs (i.e. 100 or 1,000
bootstraps) on a LINUX cluster. You can also perform multiple inferences
on larger datasets in parallel to find a best-known ML tree for your dataset.

The best hardware to run RAxML on is currently the AMD Opteron [8]
architecture.

3.2 Processor Affinity with the OpenMP Version

An important aspect if you want to use the OpenMP version of the program
is to find out how your operating system/platform handles processor affinity
of threads. Within the shared-memory context processor affinity means that
if you run e.g. 4 threads on a 4-way CPU the threads should always run on the
same CPU, i.e. thread0 on CPU0, thread1 on CPU1 etc. This is important for
efficiency, since cache entries can be continuously re-used if a thread, which
works on the same part of the shared memory, remains on the same CPU.
If threads are moved around e.g. thread0 is initially executed on CPU0 but

The RAxML Manual 5

then on CPU4 etc. the cache memory of the CPU will have to be re-filled
every time a thread is moved. With processor affinity enabled, performance
improvements of ≈ 5% have been measured on sufficiently large and thus
memory-intensive datasets.

Note, that methods to enforce processor affinity vary among operating
systems and installations. Thus, the best thing to do is to contact your system
administrator or supercomputing center.

4 The RAxML Options

raxmlHPC[-MPI|-OMP] [-a weightFileName]

[-b bootstrapRandomNumberSeed]

[-c numberOfCategories]

[-f d|e]

[-h]

[-i initialRearrangementSetting]

[-j]

[-m GTRCAT|GTRMIX|GTRGAMMA]

[-t userStartingTree]

[-w workingDirectory]

[-v]

[-y]

[-# numberOfRuns]

-s sequenceFileName

-n outputFileName

Depending on the compiler you used and the platforms that are at your
disposal, you will have three alternative executables:

1. raxmlHPC is just the sequential version.
2. raxmlHPC-MPI is the parallel coarse-grained version. It can be used if you

have a LINUX cluster available and want to perform multiple analysis or
multiple bootstraps, i.e. in combination with the -# or -# and -b options.

3. raxmlHPC-OMP only makes sense if you have a really long alignment (in
terms of base pairs) and you have access to 2-way or 4-way CPUs.

The options in brackets [] are optional, i.e. must not be specified, whereas
RAxML must be provided the sequence file name with -s and the output
file(s) name appendix with -n.

Let’s have a look at the individual options now:

-a weightFileName

This option specifies the name of a column weight file, which allows you to
assign individual weights to each column of the alignment. The default is that

6 Alexandros Stamatakis

each column has the weight 1. The weights in the weight file must be integers
separated by any type and number of whitespaces within a separate file. In
addition, there must of course be as many weights as there are columns in
your alignment.

The contents of an example weight file would look like this:

5 1 1 2 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 4 1 1

-b bootstrapRandomNumberSeed

This option allows you to turn on non-parametric bootstrapping. To allow
for reproducibility of runs in the sequential program, you have to specify a
random number seed, e.g. -b 123476. Note however, that parallel bootstraps
with the parallel version raxmlHPC-MPI are not reproducable despite the fact
that you specify a random number seed.

-c numberOfCategories

This option allows you to specify the number of distinct rate categories
used into which the individually optimized rates for each individual site are
“thrown” under -m GTRCAT. The results in [5] indicate that the default of
-c 25 works fine in most practical cases.

-f algorithm

This option allows you to select the type of algorithm you want RAxML
to execute. When you specify -f d which is also the default, RAxML will
execute the new rapid hill-climbing algorithm which is intended for huge
data. When -f e is specified RAxML will optimize the model parameters
and branch lengths of a topology provided via the -t option under GTRGAMMA.

-i initialRearrangementSetting

This allows you to specify an initial rearrangement setting for the initial
phase of the search algorithm. If you specify e.g. -i 10 the pruned subtrees
will be inserted up to a distance of 10 nodes away from their original pruning
point. If you don’t specify -i, a “good” initial rearrangement setting will
automatically be determined by RAxML (see Section 5.1 for further details).

-j

Specifies that RAxML shall write intermediate trees found during the search
to a separate file after each iteration of the search algorithm. The default
setting, i.e. if you do not specify -j is that no checkpoints will be written.

-h

If you call raxmlHPC -h this will print a summary of the program options to
your terminal.

The RAxML Manual 7

-m modelOfEvolution

Selection of the model of nucleotide substitution to be used. The default
setting is -m GTRCAT.

– -m GTRCAT: GTR approximation with optimization of individual per–
site substitution rates and classification of those individual rates into the
number of rate categories specified by -c. This is only a work-around for
GTRGAMMA so make sure not to compare alternative topologies based on their
GTRCAT likelihood values. Therefore, you can not use GTRCAT in combination
with -f e (tree evaluation) and not in combination with multiple analyses
on the original alignment (-#) option. This is due to the fact that the
author assumes that you want to compare trees based on likelihoods if you
do a multiple run on the original alignment. If you specify e.g. -m GTRCAT

and -# 10 the program will automatically use GTRMIX (see below).
– -m GTRMIX : This option will make RAxML perform a tree inference (search

for a good topology) under GTRCAT. When the analysis is finished RAxML
will switch its model to GTRGAMMA and evaluate the final tree topology
under GTRGAMMA such that it yields stable likelihood values.

– -m GTRGAMMA: GTR model of nucleotide substitution with the Γ model of
rate heterogeneity. All model parameters are estimated by RAxML. The
GTRGAMMA implementation uses 4 discrete rate categories which repre-
sents an acceptable trade-off between speed and accuracy. Note that, this
has been hard-coded for performance reasons, i.e. the number of discrete
rate categories can not be changed by the user.

-n outputFileName

Specify the name of this run, according to which the various output files will
be named.

-s sequenceFileName

Specify the name of the alignment data file which must be in relaxed PHYLIP
format. Relaxed means that you don’t have to worry if the sequence file is
interleaved or sequential and that the taxon names are too long.

-t userStartingTree

Specifies a user starting tree file name which must be in Newick format.
Branch lengths of that tree will be ignored.

-v

Displays version information.

-w workingDirectory

Name of the working directory where RAxML shall write its output files to.

8 Alexandros Stamatakis

-y

If you want to only compute a randomized parsimony starting tree with
RAxML and not execute an ML analysis of the tree specify -y. The program
will exit after computation of the starting tree. This option can be useful
if you want to assess the impact of randomized MP and Neighbor Joining
starting trees on your search algorithm. They can also be used e.g. as starting
trees for Derrick Zwickl’s GARLI program for ML inferences, which needs
comparatively “good” starting trees to work well above approximately 500
taxa.

-# numberOfRuns

Specifies the number of alternative runs on distinct starting trees. E.g. if
-# 10 is specified RAxML will compute 10 distinct ML trees starting from
10 distinct randomized maximum parsimony starting trees. In combination
with the -b option, this will invoke a multiple bootstrap analysis

4.1 Output Files

Depending on the search parameter settings RAxML will write a number of
output files. The files a run named -n exampleRunwill write are listed below:

– RAxML_log.exampleRun: A file that prints out the time, likelihood value of
the current tree and number of the checkpoint file (if the use of checkpoints
has been specified) after each iteration of the search algorithm. In the last
line it also contains the final likelihood value of the final tree topology after
thorough model optimization, but only if -m GTRMIX or -m GTRGAMMA have
been used. This file is not written if multiple bootstraps are executed,
i.e. -# and -b have been specified. In case of a multiple inference on the
original alignment (-# option) the Log-Files are numbered accordingly.

– RAxML_result.exampleRunContains the final tree topology of the current
run. This file is also written after each iteration of the search algorithm,
such that you can restart your run with -t in case your computer crashed.
This file is not written if multiple bootstraps are executed, i.e. -# and -b

have been specified.
– RAxML_info.exampleRun contains information about the model and algo-

rithm used and how RAxML was called. The final GTRGAMMA likelihood(s)
(only if -m GTRGAMMA or -m GTRMIX have been used) as well as the alpha
shape parameter(s) are printed to this file.

– RAxML_parsimonyTree.exampleRun contains the randomized parsimony
starting tree if the program has not been provided a starting tree by -t.
However, this file will not be written if a multiple bootstrap is executed
using the -# and -b options.

– RAxML_checkpoint.exampleRun.checkpointNumber if it has been speci-
fied by -j that checkpoints shall be written. Checkpoints are numbered

The RAxML Manual 9

from 0 to n where n is the number of iterations of the search algorithm.
Moreover, the checkpoint files are additionally numbered if a multiple in-
ference on the original alignment has been specified using -#. Writing of
checkpoint files is disabled when a multiple bootstrap is executed.

– RAxML_bootstrap.exampleRun If a multiple bootstrap is executed by -#

and -b all final bootstrapped trees will be written to this one, single file.

5 How to set up and run a typical Analysis

This is a HOW-TO, which describes how RAxML should best be used for a
real-world biological analysis, given an example alignment named ex_al.

Despite the observation that the default parameters work well in most
practical cases, the first thing to do is to adapt the program parameters to
your alignment. This refers to a “good” setting for the rate categories of
-m GTRCAT and the initial rearrangement setting.

5.1 Getting the Initial Rearrangement Setting right

If you don’t specify an initial rearrangement setting with the -i option the
program will automatically determine a good setting based upon the random-
ized MP starting tree. It will take the starting tree and apply lazy subtree
rearrangements with a rearrangement setting of 5, 10, 15, 20, 25. The min-
imum setting that yields the best likelihood improvement on the starting
trees will be used as initial rearrangement setting. This procedure can have
two disadvantages: Firstly, the initial setting might be very high (e.g. 20 or
25) and the program will slow down considerably. Secondly, a rearrangement
setting that yields a high improvement of likelihood scores on the starting
tree might let the program get stuck earlier in some local maximum (this
behavior could already be observed on a real dataset with about 1,900 taxa).

Therefore, you should run RAxML a couple of times (the more the better)
with the automatic determination of the rearrangement setting and with a
pre-defined value of 10 which proved to be sufficiently large and efficient in
many practical cases. In the example below we will do this based on 5 fixed
starting trees.

So let’s first generate a couple of randomized MP starting trees:

raxmlHPC -y -s ex_al -n ST0

...

raxmlHPC -y -s ex_al -n ST4

Then, infer the ML trees for those starting trees using a fixed setting
-i 10 ...

raxmlHPC -f d -i 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n FI0

...

raxmlHPC -f d -i 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n FI4

and then using the automatically determined setting on the same starting
trees:

10 Alexandros Stamatakis

raxmlHPC -f d -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n AI0

...

raxmlHPC -f d -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n AI4

Here, we use the GTRMIX model, i.e. inference under GTRCAT and evalu-
ation of the final tree under GTRGAMMA such that we can compare the final
likelihoods for the fixed setting FI0-FI4 and the automatically determined
setting AI0-AI4.

The setting that yields the best likelihood scores should be used in the
further analyses.

5.2 Getting the Number of Categories right

Another issue is to get the number of rate categories right. Due to the reduced
memory footprint and significantly reduced inference times the recommended
model to use with RAxML on large dataset is GTRMIX if you are doing runs
to find the best-known ML tree on the original alignment and GTRCAT for
bootstrapping.

Thus, you should experiment with a couple of -c settings and then look
which gives you the best Γ likelihood value.

Suppose that in the previous Section 5.1 you found that automatically
determining the rearrangement setting works best for your alignment.

You should then re-run the analyses with distinct -c settings by incre-
ments of e.g. 15 rate categories e.g.:

raxmlHPC -f d -c 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n C10_0

...

raxmlHPC -f d -c 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n C10_4

You don’t need to run it with the default setting of -c 25 since you
already have that data, such that you can continue with ...

raxmlHPC -f d -c 40 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n C40_0

...

raxmlHPC -f d -c 40 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n C40_4

and so on and so forth.
Since the GTRCAT approximation is still a new concept little is known

about the appropriate setting for -c 25. However, empirically -c 25 worked
best on 19 real-world alignments. So testing up to -c 55 should usually be
sufficient, except if you notice a tendency for final GTRGAMMA likelihood values
to further improve with increasing rate category number.

Thus, the assessment of the “good” -c setting should once again be based
on the final GTRGAMMA likelihood values.

If you don’t have the time or computational power to determine both
“good” -c and -i settings you should rather stick to determining -i since it
has shown to have a greater impact on the final results.

Also note, that increasing the number of distinct rate categories has a
negative impact on execution times.

The RAxML Manual 11

5.3 Finding the Best-Known Likelihood tree (BKL)

As already mentioned RAxML uses randomized MP starting trees in which
it initiates an ML-based optimization. Those trees are obtained by using a
randomized stepwise addition sequence to insert one taxon after the other
into the tree. When all sequences have been inserted a couple of subtree
rearrangements (also called subtree pruning re-grafting) with a fixed rear-
rangement distance of 20 are executed to further improve the MP score.

The concept to use randomized MP starting trees in contrast to the NJ
(Neighbor Joining) starting trees many other ML programs use is regarded as
an advantage of RAxML. This allows the program to start ML optimizations
of the topology from a distinct starting point in the immense topological
search space each time. Therefore, RAxML is more likely to find good ML
trees if executed several times.

This also allows you to build a consensus tree out of the final tree topolo-
gies obtained from each individual run on the original alignment. By this
and by comparing the final likelihoods you can get a feeling on how stable
(prone to get caught in local maxima) the search algorithm is on the original
alignment.

Thus, if you have sufficient computing resources available, in addition
to bootstrapping, you should do multiple inferences (10 or better 100) with
RAxML on the original alignment. This is where the -# option as well as the
parallel MPI version raxmlHPC-MPI come into play.

So, to execute a multiple inference on the original alignment on a single
processor just specify:

raxmlHPC -f d -m GTRMIX -s ex_al -# 10 -n MultipleOriginal

and RAxML will do the rest for you. Note that if you specify -m GTRCAT

in combination with -# the program will override this and switch to GTRMIX

since you will obviously want to compare the trees from the distinct runs
based on their likelihood values.

If you have a PC cluster available you would specify,

raxmlHPC-MPI -f d -m GTRMIX -s ex_al -# 100 -n MultipleOriginal

preceeded by the respective MPI run-time commands, e.g. mpiexec or mpirun
depending on your local installation (please check with your local computer
scientist).

It is important to note that you should specify the execution of one more
process than CPUs available (e.g. you have 8 CPUs → start 9 MPI processes),
since one of those is just the master process which collects data and issues
jobs to the worker processes and does not produce significant computational
load.

5.4 Bootstrapping with RAxML

To carry out a multiple non-parametric bootstrap with the sequential version
of RAxML just type:

12 Alexandros Stamatakis

raxmlHPC -f d -m GTRCAT -s ex_al -# 100 -b 12345 -n MultipleBootstrap

You have to specify a random number seed after -b for the random number
generator. This will allow you to generate reproducable results. Note that we
can use GTRCAT here, because we do not want to compare final trees based
on ML scores.

To do a parallel bootstrap type:

raxmlHPC-MPI -f d -m GTRCAT -s ex_al -# 100 -b 12345 -n MultipleBootstrap

once again preceeded by the appropriate MPI execution command. Note
that despite the fact that you specified a random number seed the results of
a parallel bootstrap are not reproducable.

6 Frequently Asked Questions

Q: Why does RAxML not implement a proportion of Invariable (P-Invar)
Sites estimate?

PERSONAL OPINION: It is unquestionable that one needs to incorpo-
rate rate heterogeneity in order to obtain “publishable” results. Put aside
the “publish-or-perish” argument, there is also strong biological evidence for
rate heterogeneity among sites. The rationale for not implementing P-Invar
in RAxML is that all three alternatives, GTRGAMMA, GTRCAT and P-Invar repre-
sent distinct approaches to incorporate rate heterogeneity. Thus, in principle
they account for the same phenomenon by different mathematical means.
Also some unpublished concerns have been raised that the usage of P-Invar
in combination with Γ can lead to a “ping-pong” effect since a change of
P-Invar leads to a change in Γ and vice versa. Gangolf Jobb has not imple-
mented P-Invar in his Treefinder [2] (www.treefinder.de) program based on
similar concerns.

Q: Why does RAxML-HPC only implement GTRCAT and GTRGAMMA
models?

For each distinct model of nucleotide substitution RAxML uses a separate,
highly optimized set of likelihood functions. The idea behind this is that GTR
is the most common and general model for real-world DNA analysis. Thus, it
is better to efficiently implement and optimize this model instead of offering
a plethora of distinct models which are only special cases of GTR but are
programmed in a generic and thus inefficient way.

PERSONAL OPINION: My personal view is that using a simpler model
than GTR only makes sense with respect to the computational cost, i.e. it
is less expensive to compute. Programs such as Modeltest [3] propose the
usage of a simpler model for a specific alignment if the likelihood of a fixed
topology under that simpler model is not significantly worse than that ob-
tained by GTR based on a likelihood ratio test. My experience is that GTR

The RAxML Manual 13

always yields a slightly better likelihood than alternative simpler models. In
addition, since RAxML has been designed for the inference of large datasets
the danger of over-parameterizing such an analysis is comparatively low. Pro-
vided these arguments the design decision was taken to rather implement the
most general model efficiently than to provide many inefficient generic imple-
mentations of models that are just special cases of GTR. Finally, the design
philosophy of RAxML is based upon the observation that a more thorough
topological search has a greater impact on final tree quality than model-
ing details. Thus, the efficient implementation of a rapid search mechanisms
is considered to be more important than model details. Note that, Derrick
Zwickl has independently adapted the same strategy in his very good GARLI
code (www.bio.utexas.edu/grad/zwickl/web), based on similar considerations
(personal communication).

Q: Why does RAxML focus on DNA-based tree inference?

The whole RAxML project started from a high performance computing
perspective, i.e. with the goal to compute huge trees on parallel computers.
Since DNA data has only 4 states in contrast to 20 for protein data the
computational cost (execution times and memory consumption) to compute
large trees with many taxa with DNA data is lower. Thus, we are currently
able to obtain larger trees based on DNA data.

PERSONAL OPINION: My personal view, although this might not neces-
sarily correspond to the current opinion in the community is that the models
of nucleotide substitution for DNA data are currently better understood. In
addition DNA data provides more signal than protein data due to the re-
dundancies in some protein encodings. So, from my point of view, if you
have the corresponding DNA data which encodes proteins, better use the
DNA data because it will probably exhibit a better phylogenetic signal and
execute much faster.

Q: How does RAxML perform compared to other programs?

RAxML has been compared to other phylogeny programs mainly based
on real-world biological datasets and best-known likelihood values. Those
analyses can be found in [4] [6] [7]. On almost all real datasets RAxML out-
performs other current programs with respect to inference times as well as
final likelihood values. An exception is Derrick Zwickl’s GARLI code which
represents a “good” alternative to RAxML for trees containing less than
approximately 1,000–1,500 taxa. The main advantages of RAxML with re-
spect to all other programs are the highly optimized and efficient likelihood
functions and the very low memory consumption. In particular the imple-
mentation of the GTRCAT feature allows RAxML to compute huge trees under
a realistic approximation of nucleotide substitution which is currently im-
possible with competing programs due to excessive memory requirements.
An initial analysis of the large multi-gene mammalian dataset under GTRCAT
showed promising results.

14 Alexandros Stamatakis

Q: Why has the performance of RAxML mainly been assessed using real-
world data?

PERSONAL OPINION: Despite the unquestionable need for simulated
data and trees to verify and test the performance of current ML algorithms
the current methods available for generation of simulated alignments are not
very realistic. For example, only few methods exist that incorporate the gen-
eration of gaps in simulated alignments. Since the model according to which
the sequences are generated on the true tree is pre-defined we are actually as-
suming that ML exactly models the true evolutionary process, while in reality
we simply don’t know how sequences evolved. The above simplifications lead
to “perfect” alignment data without gaps, that evolved exactly according to
a pre-defined model and thus exhibits a very strong phylogenetic signal in
contrast to real data. In addition, the given true tree, must not necessarily be
the Maximum Likelihood tree. This difference manifests itself in substantially
different behaviors of search algorithms on real and simulated data. Typically,
search algorithms execute significantly less (factor 5–10) topological moves on
simulated data until convergence as opposed to real data, i.e. the number of
successful Nearest Neighbor Interchanges (NNIs) or subtree rearrangements
is lower. Moreover, in several cases the likelihood of trees found by RAxML
on simulated data was better than that of the true tree. Another important
observation is that program performance can be inverted by simulated data.
Thus, a program that yields “good” Robinson–Foulds distances on simulated
data can in fact perform much worse on real data than a program that does
not perform well on simulated data. If one is willing to really accept ML as
inference criterion on real data one must also be willing to assume that the
tree with the best likelihood score is the tree that is closest to the true tree.

My personal conclusion is that there is a strong need to improve simulated
data generation and methodology. In addition, the perhaps best way to assess
the validity of our tree inference methods consists in an empirical evaluation
of new results and insights obtained by real phylogenetic analysis. This should
be based on the prior knowledge of Biologists about the data and the medical
and scientific benefits attained by the computation of phylogenies.

7 Things in Preparation

A couple of things are in preparation (to be released within the next 6 months)
which will further expand the capabilities of RAxML:

– MPI-based parallelization of the actual search algorithm for parallel infer-
ence of a single huge tree on a cluster

– Capability to provide distinct types of constraint trees as input
– Implementation of multiple-model estimate: Distinct models of nucleotide

substitution can be assigned to distinct partitions of the alignment. This
is particularly useful for multi-gene analyses

The RAxML Manual 15

– Ability to provide a non-comprehensive starting tree from a previous anal-
ysis to which newly aligned taxa can be added.

For any further requests or proposals that you might have please send an
email to stamatak@ics.forth.gr or contact me via skype internet telephony,
login: stamatak.

Acknowledgments

Many people have contributed to improve RAxML either via personal discus-
sions, email, or skype or by providing real-world alignments and answering
all sorts of CS- and biology-related questions. In the hope not to have forgot-
ten anybody I would like to thank the following colleagues (names are in no
particular order): Olivier Gascuel, Stephane Guindon, Wim Hordijk, Michael
Ott, Olaf Bininda-Emonds, Maria Charalambous, Pedro Trancoso, Tobias
Klug, Derrick Zwickl, Arno Tuimila, Charles Robertson, Daniele Catanzaro,
Daniel Dalevi, Mark Miller, Usman Roshan, Zhihua Du, Markus Göker, Bret
Larget, Josh Wilcox, Marty J. Wolf, Aggelos Bilas, Alkiviadis Simeonidis,
Martin Reczko, Gangolf Jobb.

References

1. S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst. Biol., 52(5):696–704, 2003.

2. G. Jobb, A. Haeseler, and K. Strimmer. Treefinder: A powerful graphical analysis
environment for molecular phylogenetics. BMC Evolutionary Biology, 4, 2004.

3. D. Posada and K. Crandall. Modeltest: testing the model of dna substitution.
Bioinformatics, 14(9):817–818, 1998.

4. A. Stamatakis. An efficient program for phylogenetic inference using simulated
annealing. In Proc. of IPDPS2005, Denver, Colorado, USA, 2005.

5. A. Stamatakis. Phylogenetic models of rate heterogeneity: A high performance
computing perspective. In Proc. of IPDPS2006, Rhodos, Greece, 2006.

6. A. Stamatakis, T. Ludwig, and H. Meier. New fast and accurate heuristics for
inference of large phylogenetic trees. In Proc. of IPDPS2004, 2004.

7. A. Stamatakis, T. Ludwig, and H. Meier. Raxml-iii: A fast program for maximum
likelihood-based inference of large phylogenetic trees. Bioinformatics, 21(4):456–
463, 2005.

8. A. Stamatakis, O. M., and L. T. Raxml-omp: An efficient program for phyloge-
netic inference on smps. In Proc. of PaCT05, pages 288–302, 2005.

