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What was done?  Why is it important?  Who cares?

• Hybrid MPI/OpenMP version of MrBayes was developed
• OpenMP code was added to previous MPI-only code

• Hybrid MPI/Pthreads version of RAxML was developed
• MPI code was added to previous Pthreads-only code

• These enhancements allow multiple multi-core nodes in
a cluster to be used in a single run
• Typical problems now run well on 4 to 10 nodes (32 to 80 cores) of

Abe & Dash as compared to only on one node (8 cores) before
• Hybrid, multi-grained codes are available on TeraGrid via

CIPRES portal
• Work was done as part of ASTA project supporting Mark Miller of

SDSC, who oversees the portal
• Number of cores (processes * threads) is selected automatically
• Portal simplifies use of the codes by typical biologists
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What does a phylogenetics code do?

                     .  .  .   ......  .  .
Human AAGCTTCACCGGCGCAGTCATTCTCATAAT...
Chimpanzee AAGCTTCACCGGCGCAATTATCCTCATAAT...
Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAAT...
Orangutan      AAGCTTCACCGGCGCAACCACCCTCATGAT...
Gibbon     AAGCTTTACAGGTGCAACCGTCCTCATAAT...

      /-------- Human
      |
      |---------- Chimpanzee
      +
      |   /---------- Gorilla
      |   |
      \---+             /-------------------------------- Orangutan
          \-------------+
                        \----------------------------------------------- Gibbon

It starts from a
multiple sequence alignment (matrix of taxa versus characters)

& generates a phylogeny (usually a tree with taxa at the tips)
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A little more about molecular phylogenetics

• Multiple sequence alignment
• Specified by DNA bases, RNA bases, or amino acids
• Obtained by separate analysis

• Possible changes to a sequence
• Substitution (point mutation or SNP: treated in MrBayes & RAxML)
• Insertion & deletion (also handled by MrBayes & RAxML)
• Structural variations (e.g., duplication, inversion, & translocation)
• Recombination & horizontal gene transfer (important in bacteria)

• Common methods, typically heuristic & based on
models of molecular evolution
• Distance
• Parsimony
• Maximum likelihood (used by RAxML)
• Bayesian (used by MrBayes)
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Key similarities between MrBayes & RAxML

• Both compute a likelihood score that depends upon
• Tree topology
• Branch lengths
• Parameters for model of molecular evolution, which may be

partitioned, i.e., vary between genes in multi-gene alignments

• Both are programmed in C

      /-------- Human
      |
      |---------- Chimpanzee
      +
      |   /---------- Gorilla
      |   |
      \---+             /-------------------------------- Orangutan
          \-------------+
                        \----------------------------------------------- Gibbon
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Key differences between MrBayes & RAxML

• MrBayes
• Assumes prior probabilities for statistical parameters (consistent

with Bayesian approach)
• Optimizes tree topology, branch lengths, and model parameters using

Metropolis-Coupled Markov-Chain Monte-Carlo approach or (MC)3

• Obtains statistical support by sampling results during stationary phase
• RAxML

• Optimizes tree topology using a variant of subtree pruning and
regrafting (SPR) called lazy subtree rearrangement (LSR)

• Optimizes branch lengths using Newton-Raphson method
• Optimizes model parameters using Brentʼs algorithm
• Obtains statistical support from separate bootstrap searches
• Generally runs faster
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MrBayes has parallelism at multiple algorithmic levels

• A typical analysis employs 2 “runs” with 4 chains each
• Each run starts from a different initial tree
• The chains correspond to different amounts of heating in the

Metropolis coupling
• (MC)3 has coarse-grained parallelism across 8 run-chain

instances that can be exploited using MPI (in v 3.1.2)
• Computation of likelihood score can exploit fine-grained

parallelism across patterns (i.e., distinct columns in
alignment) using OpenMP (in new, hybrid code: v 3.1.2h)
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5 benchmark data sets & 4 benchmark computers
were considered

Benchmark data sets (all DNA or RNA)

Benchmark computers (all with quad-core x64 processors)
Abe at NCSA 8-core nodes with 2.33-GHz Intel Clovertowns
Dash at SDSC 8-core nodes with 2.4-GHz Intel Nehalems
Ranger at TACC 16-core nodes with 2.3-GHz AMD Barcelonas
Triton PDAF at SDSC 32-core nodes with 2.5-GHz AMD Shanghais

Recommended
Taxa Characters Patterns bootstraps

354 460 348 1,200
150 1,269 1,130 650
218 2,294 1,846 550
404 13,158 7,429 700
125 29,149 19,436 50
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For problem with 19k patterns, MrBayes achieves speedup
of 23 on 64 cores of Abe using 8 MPI processes with 8 threads each;

speedup is 5.6 compared to MPI-only code on 8 cores
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Parallel efficiency plot of same data clarifies performance differences;
on > 8 cores, using 8 threads is optimal; on 8 cores,

using 2 MPI processes & 4 threads is 1.4x faster than 8 MPI processes
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Scaling for same problem separated into 34 partitions is much worse;
this is because load balance is poor with OpenMP;

on 8 cores, using 8 MPI processes is fastest
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Comparing best speeds per core at each core count clearly shows that
runs with partitions are appreciably slower for 8 or more cores
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RAxML has parallelism at multiple algorithmic levels

• Computation of likelihood score within a tree can exploit
fine-grained parallelism across patterns using Pthreads
(in v 7.0.0)

• Three types of searches can exploit coarse-grained
parallelism across trees using MPI (in new, hybrid code:
v 7.2.4 and later)
• Multiple ML searches on the same data set starting from different

initial trees to explore solution space better
• Multiple bootstrap searches on resampled data sets to obtain

confidence values on interior branches of tree (i.e., statistical support)
• Comprehensive analysis that combines the two previous analyses

to give a complete, publishable analysis in a single run
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Comprehensive analysis combines
many rapid bootstraps followed by a full ML search

• Four stages (with typical numbers of searches)
• 100 rapid bootstrap searches
• 20 fast ML searches
• 10 slow ML searches
• 1 thorough ML search

• Coarse-grained parallelism via MPI
• In first three stages, but decreasing with each stage

• Fine-grained parallelism via Pthreads
• Available at all stages

• Tradeoff in effectiveness between MPI and Pthreads
• Typically 10 or 20 MPI processes max
• Optimal number of Pthreads increasing with number of patterns, but

limited to number of cores per node
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Some noteworthy points regarding
the MPI parallel implementation

• A thorough search is done for every MPI process
(instead of just a single search as in Pthreads-only code)
• Increases run time only a little, because load is reasonably balanced
• Often leads to better quality solution, so extra work is useful

• Only two significant MPI calls are made
• MPI_Barrier after bootstraps
• MPI_Bcast after thorough searches to select best one for output
• Much simpler than older MPI-only implementation that used

master/worker approach and more efficient given reasonable load
balance

• Treatment of random numbers is reproducible
• At least for a given number of MPI processes
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For problem with 1.8k patterns, RAxML achieves speedup
of 35 on 80 cores of Dash using 10 MPI processes with 8 threads each;

speedup is 6.5 compared to Pthreads-only code on 8 cores
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Parallel efficiency plot of same data clarifies performance differences;
on ≥ 8 cores, using 4 or 8 threads is optimal;

on 8 cores, using 4 threads is 1.3x faster than 8 threads
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Bootstraps & fast searches scale well with MPI;
slow & thorough searches limit scalability
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For problem with 19k patterns, performance on Dash is best using
all 8 threads; scaling is poorer than for problem with 1.8k patterns
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For problem with 19k patterns, scaling is better
on Triton PDAF than on Dash using all 32 threads available
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For problem with 19k patterns, Triton PDAF is faster
than other computers at high core counts
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With more bootstraps (per bootstopping):
speedup is better & parallel efficiency ≥ 0.44 on 80 cores;

optimal number of threads drops;
run time for longest problem goes from > 4 d to < 1.8 h

    Best time (s) / threads Speedup Computer/
Taxa Patterns on 1c          on 80c on 80c bootstraps

  Results for 100 bootstraps specified
354 348 1,980 130 /4 15.23 Dash
150 1,130 2,325 95 /8 24.47 Dash
218 1,846 9,630 271 /8 35.54 Dash
404 7,429 72,866 1,828 /8 39.86 Dash
125 19,436 22,970 1,092 /8 21.03 Dash
125 19,436 32,627 847 /32 + 38.52 + Triton PDAF

  Results for >100 bootstraps specified
354 348 15,703 443 /2 35.45 Dash/1,200
150 1,130 10,566 290 /4 36.43 Dash/   650
218 1,846 33,738 845 /4 39.93 Dash/   550
404 7,429 355,724 6,270 /8 56.73 Dash/   700

   1c and 80c refer to the number of cores used in a run.
   The run with a + was made on 64c.
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For problem with 19k patterns, RAxML speed per core is
appreciably slower with partitions than without on Dash,

similar to behavior of MrBayes on Abe
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The hybrid, multi-grained codes provide
some notable benefits

• Higher core counts can be used to solve similar problems
faster or to solve larger problems in same amount of time
• For unpartitioned problem with 19k patterns, speedup of hybrid MrBayes

is 5.6 on 64 cores of Abe compared to MPI-only code on 8 cores
• For problem with 1.8k patterns, speedup of hybrid RAxML is 6.5 on 80

cores of Dash compared to Pthreads-only code on 8 cores
• Number of threads per node can be adjusted for optimal

efficiency
• For same MrBayes problem, using 2 MPI processes & 4 threads each

on a single node of Abe is 1.4x faster than using 8 processes alone
• For same RAxML problem, using 2 MPI processes & 4 threads each

on a single node of Dash is 1.3x faster than using 8 threads alone
• Additional thorough searches in RAxML comprehensive

analysis often lead to better solution
• Extra work is useful
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There are practical considerations in selecting
computers and concurrencies for TeraGrid access via portal

• To solve larger problems: Abe is attractive because it has long queue
with 7-day limit versus 2-day limit on most other TeraGrid computers
• Restart capabilities of both MrBayes & RAxML are limited

• To solve problems faster: use more cores (= processes * threads), up
to a point
+ Shorter run-time limit often means reduced wait in queue
- Number of cores (& nodes) should be limited to keep parallel efficiency >= 50%

and avoid expending too many SUs
- Number of nodes for jobs in long queue seems to be limited, so wait in queue

can increase when more nodes are requested
• Number of processes & number of threads (hence cores & nodes) are

selected automatically using rules dependent upon data set & analysis
• For MrBayes: typically 2 or 4 nodes are used instead of 1 (with 2 or 4 threads)
• For RAxML: typically 5 nodes are used instead of 1 (with 4 or 8 threads)
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Hybrid MrBayes & RAxML are available

• In source code from Exelixis Lab Web site:
http://wwwkramer.in.tum.de/exelixis/software.html

• On TeraGrid via CIPRES portal:
http://www.phylo.org/portal2


