
1

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Hybrid Parallelization of the
MrBayes & RAxML

Phylogenetics Codes

Wayne Pfeiffer (SDSC/UCSD) &
Alexandros Stamatakis (TUM)

February 25, 2010

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

What was done? Why is it important? Who cares?

• Hybrid MPI/OpenMP version of MrBayes was developed
• OpenMP code was added to previous MPI-only code

• Hybrid MPI/Pthreads version of RAxML was developed
• MPI code was added to previous Pthreads-only code

• These enhancements allow multiple multi-core nodes in
a cluster to be used in a single run
• Typical problems now run well on 4 to 10 nodes (32 to 80 cores) of

Abe & Dash as compared to only on one node (8 cores) before
• Hybrid, multi-grained codes are available on TeraGrid via

CIPRES portal
• Work was done as part of ASTA project supporting Mark Miller of

SDSC, who oversees the portal
• Number of cores (processes * threads) is selected automatically
• Portal simplifies use of the codes by typical biologists

2

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

What does a phylogenetics code do?

Human AAGCTTCACCGGCGCAGTCATTCTCATAAT...
Chimpanzee AAGCTTCACCGGCGCAATTATCCTCATAAT...
Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAAT...
Orangutan AAGCTTCACCGGCGCAACCACCCTCATGAT...
Gibbon AAGCTTTACAGGTGCAACCGTCCTCATAAT...

 /-------- Human
 |
 |---------- Chimpanzee
 +
 | /---------- Gorilla
 | |
 \---+ /-------------------------------- Orangutan
 \-------------+
 \--- Gibbon

It starts from a
multiple sequence alignment (matrix of taxa versus characters)

& generates a phylogeny (usually a tree with taxa at the tips)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

A little more about molecular phylogenetics

• Multiple sequence alignment
• Specified by DNA bases, RNA bases, or amino acids
• Obtained by separate analysis

• Possible changes to a sequence
• Substitution (point mutation or SNP: treated in MrBayes & RAxML)
• Insertion & deletion (also handled by MrBayes & RAxML)
• Structural variations (e.g., duplication, inversion, & translocation)
• Recombination & horizontal gene transfer (important in bacteria)

• Common methods, typically heuristic & based on
models of molecular evolution
• Distance
• Parsimony
• Maximum likelihood (used by RAxML)
• Bayesian (used by MrBayes)

3

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Key similarities between MrBayes & RAxML

• Both compute a likelihood score that depends upon
• Tree topology
• Branch lengths
• Parameters for model of molecular evolution, which may be

partitioned, i.e., vary between genes in multi-gene alignments

• Both are programmed in C

 /-------- Human
 |
 |---------- Chimpanzee
 +
 | /---------- Gorilla
 | |
 \---+ /-------------------------------- Orangutan
 \-------------+
 \--- Gibbon

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Key differences between MrBayes & RAxML

• MrBayes
• Assumes prior probabilities for statistical parameters (consistent

with Bayesian approach)
• Optimizes tree topology, branch lengths, and model parameters using

Metropolis-Coupled Markov-Chain Monte-Carlo approach or (MC)3

• Obtains statistical support by sampling results during stationary phase
• RAxML

• Optimizes tree topology using a variant of subtree pruning and
regrafting (SPR) called lazy subtree rearrangement (LSR)

• Optimizes branch lengths using Newton-Raphson method
• Optimizes model parameters using Brentʼs algorithm
• Obtains statistical support from separate bootstrap searches
• Generally runs faster

4

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

MrBayes has parallelism at multiple algorithmic levels

• A typical analysis employs 2 “runs” with 4 chains each
• Each run starts from a different initial tree
• The chains correspond to different amounts of heating in the

Metropolis coupling
• (MC)3 has coarse-grained parallelism across 8 run-chain

instances that can be exploited using MPI (in v 3.1.2)
• Computation of likelihood score can exploit fine-grained

parallelism across patterns (i.e., distinct columns in
alignment) using OpenMP (in new, hybrid code: v 3.1.2h)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

5 benchmark data sets & 4 benchmark computers
were considered

Benchmark data sets (all DNA or RNA)

Benchmark computers (all with quad-core x64 processors)
Abe at NCSA 8-core nodes with 2.33-GHz Intel Clovertowns
Dash at SDSC 8-core nodes with 2.4-GHz Intel Nehalems
Ranger at TACC 16-core nodes with 2.3-GHz AMD Barcelonas
Triton PDAF at SDSC 32-core nodes with 2.5-GHz AMD Shanghais

Recommended
Taxa Characters Patterns bootstraps

354 460 348 1,200
150 1,269 1,130 650
218 2,294 1,846 550
404 13,158 7,429 700
125 29,149 19,436 50

5

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

For problem with 19k patterns, MrBayes achieves speedup
of 23 on 64 cores of Abe using 8 MPI processes with 8 threads each;

speedup is 5.6 compared to MPI-only code on 8 cores

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Parallel efficiency plot of same data clarifies performance differences;
on > 8 cores, using 8 threads is optimal; on 8 cores,

using 2 MPI processes & 4 threads is 1.4x faster than 8 MPI processes

6

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Scaling for same problem separated into 34 partitions is much worse;
this is because load balance is poor with OpenMP;

on 8 cores, using 8 MPI processes is fastest

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Comparing best speeds per core at each core count clearly shows that
runs with partitions are appreciably slower for 8 or more cores

7

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

RAxML has parallelism at multiple algorithmic levels

• Computation of likelihood score within a tree can exploit
fine-grained parallelism across patterns using Pthreads
(in v 7.0.0)

• Three types of searches can exploit coarse-grained
parallelism across trees using MPI (in new, hybrid code:
v 7.2.4 and later)
• Multiple ML searches on the same data set starting from different

initial trees to explore solution space better
• Multiple bootstrap searches on resampled data sets to obtain

confidence values on interior branches of tree (i.e., statistical support)
• Comprehensive analysis that combines the two previous analyses

to give a complete, publishable analysis in a single run

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Comprehensive analysis combines
many rapid bootstraps followed by a full ML search

• Four stages (with typical numbers of searches)
• 100 rapid bootstrap searches
• 20 fast ML searches
• 10 slow ML searches
• 1 thorough ML search

• Coarse-grained parallelism via MPI
• In first three stages, but decreasing with each stage

• Fine-grained parallelism via Pthreads
• Available at all stages

• Tradeoff in effectiveness between MPI and Pthreads
• Typically 10 or 20 MPI processes max
• Optimal number of Pthreads increasing with number of patterns, but

limited to number of cores per node

8

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Some noteworthy points regarding
the MPI parallel implementation

• A thorough search is done for every MPI process
(instead of just a single search as in Pthreads-only code)
• Increases run time only a little, because load is reasonably balanced
• Often leads to better quality solution, so extra work is useful

• Only two significant MPI calls are made
• MPI_Barrier after bootstraps
• MPI_Bcast after thorough searches to select best one for output
• Much simpler than older MPI-only implementation that used

master/worker approach and more efficient given reasonable load
balance

• Treatment of random numbers is reproducible
• At least for a given number of MPI processes

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

For problem with 1.8k patterns, RAxML achieves speedup
of 35 on 80 cores of Dash using 10 MPI processes with 8 threads each;

speedup is 6.5 compared to Pthreads-only code on 8 cores

9

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Parallel efficiency plot of same data clarifies performance differences;
on ≥ 8 cores, using 4 or 8 threads is optimal;

on 8 cores, using 4 threads is 1.3x faster than 8 threads

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Bootstraps & fast searches scale well with MPI;
slow & thorough searches limit scalability

10

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

For problem with 19k patterns, performance on Dash is best using
all 8 threads; scaling is poorer than for problem with 1.8k patterns

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

For problem with 19k patterns, scaling is better
on Triton PDAF than on Dash using all 32 threads available

11

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

For problem with 19k patterns, Triton PDAF is faster
than other computers at high core counts

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

With more bootstraps (per bootstopping):
speedup is better & parallel efficiency ≥ 0.44 on 80 cores;

optimal number of threads drops;
run time for longest problem goes from > 4 d to < 1.8 h

 Best time (s) / threads Speedup Computer/
Taxa Patterns on 1c on 80c on 80c bootstraps

 Results for 100 bootstraps specified
354 348 1,980 130 /4 15.23 Dash
150 1,130 2,325 95 /8 24.47 Dash
218 1,846 9,630 271 /8 35.54 Dash
404 7,429 72,866 1,828 /8 39.86 Dash
125 19,436 22,970 1,092 /8 21.03 Dash
125 19,436 32,627 847 /32 + 38.52 + Triton PDAF

 Results for >100 bootstraps specified
354 348 15,703 443 /2 35.45 Dash/1,200
150 1,130 10,566 290 /4 36.43 Dash/ 650
218 1,846 33,738 845 /4 39.93 Dash/ 550
404 7,429 355,724 6,270 /8 56.73 Dash/ 700

 1c and 80c refer to the number of cores used in a run.
 The run with a + was made on 64c.

12

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

For problem with 19k patterns, RAxML speed per core is
appreciably slower with partitions than without on Dash,

similar to behavior of MrBayes on Abe

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

The hybrid, multi-grained codes provide
some notable benefits

• Higher core counts can be used to solve similar problems
faster or to solve larger problems in same amount of time
• For unpartitioned problem with 19k patterns, speedup of hybrid MrBayes

is 5.6 on 64 cores of Abe compared to MPI-only code on 8 cores
• For problem with 1.8k patterns, speedup of hybrid RAxML is 6.5 on 80

cores of Dash compared to Pthreads-only code on 8 cores
• Number of threads per node can be adjusted for optimal

efficiency
• For same MrBayes problem, using 2 MPI processes & 4 threads each

on a single node of Abe is 1.4x faster than using 8 processes alone
• For same RAxML problem, using 2 MPI processes & 4 threads each

on a single node of Dash is 1.3x faster than using 8 threads alone
• Additional thorough searches in RAxML comprehensive

analysis often lead to better solution
• Extra work is useful

13

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

There are practical considerations in selecting
computers and concurrencies for TeraGrid access via portal

• To solve larger problems: Abe is attractive because it has long queue
with 7-day limit versus 2-day limit on most other TeraGrid computers
• Restart capabilities of both MrBayes & RAxML are limited

• To solve problems faster: use more cores (= processes * threads), up
to a point
+ Shorter run-time limit often means reduced wait in queue
- Number of cores (& nodes) should be limited to keep parallel efficiency >= 50%

and avoid expending too many SUs
- Number of nodes for jobs in long queue seems to be limited, so wait in queue

can increase when more nodes are requested
• Number of processes & number of threads (hence cores & nodes) are

selected automatically using rules dependent upon data set & analysis
• For MrBayes: typically 2 or 4 nodes are used instead of 1 (with 2 or 4 threads)
• For RAxML: typically 5 nodes are used instead of 1 (with 4 or 8 threads)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

Hybrid MrBayes & RAxML are available

• In source code from Exelixis Lab Web site:
http://wwwkramer.in.tum.de/exelixis/software.html

• On TeraGrid via CIPRES portal:
http://www.phylo.org/portal2

